GENERAL TOPOLOGY EXERCISES FOR SESSION 1 (TUE 27.2)

Exercise 1. Let $X = \mathbb{R}$ and let $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(x, \infty) : x \in \mathbb{R}\}$. Prove that \mathcal{T} is a topology.

Exercise 2. Find a collection of open sets in \mathbb{R}^2 whose intersection is not open.

Exercise 3. Let \mathbb{R} be equipped with the discrete topology. Find the boundary of the open interval (0,1). How does the answer change if we use the mini-topology $\mathcal{T}_{mini} = \{\emptyset, \mathbb{R}\}$ instead?

Exercise 4. Let $A \subset X$. Show that the sets int A and ext A are open sets, and that ∂A is a closed set.

Exercise 5. Show that if $B \subset A$ is open and int $A \subset B$, then B = int A.

Exercise 6. Find the interior and boundary of the following sets in the standard topology of \mathbb{R}^2 :

- (1) $\{(x, y) : y = 0\}.$
- (2) $\{(x, y) : x > 0 \text{ and } y \neq 0\}.$
- (3) $\{(x, y) : x \in \mathbb{Q}\}.$
- (4) $\{(x, y) : 0 < x^2 + y^2 \le 1\}.$
- (5) $\{(x, y) : x, y \in \mathbb{Q}, x > y\}.$

Exercise 7. Does it always hold that $int(A \cup B) = int A \cup int B$? If not, what about an inclusion \subset in either direction?

Exercise 8. Let $A \subset B \subset X$. Suppose that B is closed and A is a closed set in B (with the relative topology). Show that A is closed in X.

Exercise 9. Show that the relative topology on \mathbb{Z} as a subset of \mathbb{R} is the discrete topology.

Exercise 10. Let $A \subset B \subset X$. We denote by int A the interior of A as a subset of X, and by $\operatorname{int}_B A$ the interior of A in the relative topology on B. Show that $\operatorname{int} A \subset \operatorname{int}_B A$.

Exercise 11. Let $X = \mathbb{R}$ and $\mathcal{T}_{co} = \{\mathbb{R}\} \cup \{A \subset \mathbb{R} : \mathbb{R} \setminus A \text{ is countable.}\}$. Is \mathcal{T}_{co} a topology on \mathbb{R} ?

Exercise 12. Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X. Show that $\mathcal{T}_1 \cap \mathcal{T}_2$ is also a topology. What about $\mathcal{T}_1 \cup \mathcal{T}_2$?

Exercise 13. Let $A \subset X$. Prove that

- $\partial \partial A \subset \partial A$.
- $\partial \partial A = \partial A$ if A is closed.
- $\partial \partial \partial A = \partial \partial A$.

Exercise 14. Let $X = \{1, 2, 3\}$. We have drawn one topology $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, X\}$ for X in the attached picture:

How many topologies of X exist in total?