GENERAL TOPOLOGY EXERCISES FOR SESSION 3 (TUE 5.3)

Exercise 1. Let $A \subset X$ and suppose that there is a sequence of points $(x_n) \subset A$ converging to some $a \in X$. Show that $a \in \overline{A}$.

Exercise 2. Suppose that \mathbb{R} is equipped with the cofinite topology (A is open if $A = \emptyset$ or A^c is finite). Find all limit points of the sequence $1, 2, 3, \ldots$

Exercise 3. Let X be Hausdorff and $A \subset X$. Prove that A is Hausdorff in the relative topology.

Exercise 4. Let \mathbb{R} be equipped with the topology given by the basis $\{(-R, R) : R > 0\}$. Show that a sequence has a limit if and only if it is bounded (i.e. $|x_n| \leq M$ for some M > 0 and all n).

Exercise 5. Show that in a T_1 -space X, a point x is an accumulation point of a set A if and only if every neighbourhood of x contains infinitely many points in A.

Exercise 6. Let $A \subset X$ and let $(x_n) \subset A$ be a converging sequence in the relative topology on A. Show that (x_n) also converges in the topology of X.

For which sets A is the reverse of this statement always true, i.e. if $(x_n) \subset A$ converges in X, then it converges in the subspace A with the relative topology?

Exercise 7. Prove the second part of Theorem 2.4 in the lecture notes: If X is first-countable, $A \subset X$ and $a \in \overline{A}$, then there is a sequence in A converging to a.