GENERAL TOPOLOGY EXERCISES FOR SESSION 4 (WED 6.3)

Exercise 1. Show that any continuous function $f : X \to Y$ is sequentially continuous.

Exercise 2. Suppose that \mathcal{B} is a basis for the topology on Y and $f: X \to Y$ is such that $f^{-1}(B)$ is open for every $B \in \mathcal{B}$. Prove that f is continuous.

Exercise 3. Let $\chi_A : X \to \mathbb{R}$ denote the **characteristic function** of a set $A \subset X$, meaning that $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ otherwise. Show that χ_A is discontinuous at a point x if and only if $x \in \partial A$.

Exercise 4. Let $f, g: X \to Y$ be continuous and Y be Hausdorff.

- Show that the set $\{x \in X : f(x) = y_0\}$ is closed for all $y_0 \in Y$.
- Show that the set $\{x \in X : f(x) = g(x)\}$ is closed.

Exercise 5. Show that $f : X \to Y$ is continuous if and only if for every $x \in X$ and $A \subset X$ such that $x \in \overline{A}$, we have that $f(x) \in \overline{f(A)}$.

Exercise 6. Come up with

- A continuous map which is not open.
- A continuous open map which is not closed, and vice versa.

Exercise 7. Find a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at exactly one point.

Exercise 8. Show that \mathbb{R} is homeomorphic to its own subspace (0, 1).

Exercise 9. Show that the pointwise limit of continuous functions does not need to be continuous (in contrast to the Uniform Limit Theorem).

Exercise 10. Let us say that $f : X \to \mathbb{R}$ is **lower semicontinuous** if the following holds: For every $a \in X$ and every $\epsilon > 0$ there exists a neighbourhood U of a such that $f(x) > f(a) - \epsilon$ for all $x \in U$. Find a topology \mathcal{T} on \mathbb{R} such that $f : X \to \mathbb{R}$ is continuous w.r.t. the topology \mathcal{T} if and only if it is lower semicontinuous.