GENERAL TOPOLOGY EXERCISES FOR SESSION 7 (TUE 19.3)

Exercise 1. Prove that if $A \subset X$ is connected, then \overline{A} is connected.

Exercise 2. Let A be connected. Is int(A) necessarily connected?

Exercise 3. Prove the Border Crossing Theorem: Let $E \subset X$ be connected and $A \subset X$. Prove that if E intersects A and A^{c} , then it intersects ∂A .

Exercise 4. Suppose that in the space X for every pair of points $x, y \in X$ there exists a connected set E(x, y) which contains both x and y. Prove that X is connected.

Exercise 5. Prove that a space X is locally connected if and only if the components of every open subset $U \subset X$ are also open sets.

Exercise 6. Let $A \subset X$ and suppose that both A and X are connected. Show that if U and V form a separation of $X \setminus A$, then both $A \cup U$ and $A \cup V$ are connected.

Exercise 7. Prove that none of the sets [0,1], [0,1) and (0,1) are homeomorphic. (*Hint: How can you use connectedness?*)

Exercise 8. Show that if a metric space X is connected and has more than one point, it is uncountable. (Hint: Find a surjection from X to an interval in \mathbb{R} .)

Exercise 9. Show that if $A \subset \mathbb{R}^2$ is countable, then $\mathbb{R}^2 \setminus A$ is path connected.