GENERAL TOPOLOGY EXERCISES FOR SESSION 8 (WED 20.3)

Exercise 1. Verify that the one-point compactification X^* defined in Definition 3.3 is actually compact.

Exercise 2. Show that a closed subspace of a normal space is normal.

Exercise 3. Show that every compact Hausdorff space is normal. (Hint: Theorem 3.4)

Exercise 4. Show that if X is normal and $F, G \subset X$ are closed, then there are open neighbourhoods U, V of F, G respectively such that $\overline{U} \cap \overline{V} = \emptyset$.

Exercise 5. Show that every locally compact Hausdorff space is regular. You can follow this scheme:

- Pick a closed set $F \subset X$ and $x \notin F$.
- Consider a neighbourhood V of x such that \overline{V} is compact.
- Handle the situation inside \overline{V} first.
- Then you can solve the general situation easily.

Exercise 6. Show that the one-point compactification of \mathbb{Z}_+ is homeomorphic with the subspace $\{0\} \cup \{\frac{1}{n} : n \ge 1\}$ of \mathbb{R} .

Exercise 7. A space X is said to be **completely normal** if every subspace of X is normal. Prove that X is completely normal if and only if for every pair of sets $A, B \subset X$ with $\overline{A} \cap B = \emptyset = A \cap \overline{B}$, there exist disjoint neighbourhoods of A and B.

Exercise 8. Are metrizable spaces completely normal?