GENERAL TOPOLOGY EXERCISES FOR SESSION 9 (TUE 26.3)

Exercise 1. Show that a subset $S \subset X$ is dense if and only if $\overline{S} = X$.

Exercise 2. Prove that a second-countable space is Lindelöf.

Exercise 3. Let $f, g : X \to Y$ be continuous functions with Y being Hausdorff. Suppose that f(s) = g(s) for every point s in a dense set $S \subset X$. Show that f(x) = g(x) for all $x \in X$.

The next few exercises concern the **lower limit topology** on \mathbb{R} . This topology \mathcal{T}_{ℓ} is generated by the basis of half-open intervals $[a, b) \subset \mathbb{R}$, a < b. The resulting topological space is denoted by \mathbb{R}_{ℓ} , and also sometimes called the *Sorgenfrey line*.

Exercise 4. Find the connected components of \mathbb{R}_{ℓ} .

Exercise 5. Check what separation axioms \mathbb{R}_{ℓ} satisfies.

Exercise 6. Does the sequence $x_n = 1 - \frac{1}{n}$ have a cluster point in \mathbb{R}_{ℓ} ?

Exercise 7. Prove that \mathbb{R}_{ℓ} is Lindelöf.

Exercise 8. Is \mathbb{R}_{ℓ} locally compact?

Exercise 9. Let $f_j : X \to Y_j$ be a countable collection of functions to spaces Y_j which are second-countable. Prove that the topology on X induced by the f_j 's is second-countable.

Exercise 10. Let X be second-countable. Show that if $A \subset X$ is uncountable, then $\operatorname{acc}(A) \cap A$ is uncountable.