GENERAL TOPOLOGY HOMEWORK FOR WEEK 5

DEADLINE: MON 8.4, 23:59. NOTE: 2 WEEK DEADLINE

Some hints are on the next page.

Exercise 1. Let X be separable and $f : X \to Y$ be a continuous surjection. Prove that Y is separable.

Exercise 2. Prove that a compact metrizable space is second-countable.

Exercise 3. Let X have two topologies \mathcal{T}_1 and \mathcal{T}_2 such that $\mathcal{T}_1 \subset \mathcal{T}_2$. Suppose that \mathcal{T}_1 is Hausdorff and \mathcal{T}_2 is compact. Prove that $\mathcal{T}_1 = \mathcal{T}_2$.

Exercise 4. Let X be locally compact, Hausdorff, and second-countable. Prove that there exists a sequence of open sets U_1, U_2, \ldots such that all of the following hold:

- $\overline{U_j}$ is compact for all j.
- $\overline{U_j} \subset U_{j+1}$ for all j.
- $X = \bigcup_j U_j$.

Hint for Exercise 1: This one is straightforward. Good luck!

Hint for Exercise 2: For each n, cover the space by balls of radius 1/n.

Hint for Exercise 3: Two ways:

- a) Show that closed sets in \mathcal{T}_2 are in \mathcal{T}_1
- b) Fancy way: Exercise 2 from Session 6

Hint for Exercise 4: Theorem 4.4 in the lecture notes is useful here. Prove that if \mathcal{B} is your countable basis, then $\mathcal{B}' = \{B \in \mathcal{B} : \overline{B} \text{ is compact}\}$ is still a basis. Find the sets U_j inductively using the elements in \mathcal{B}' .