GENERAL TOPOLOGY EXERCISES FOR SESSION 2 (WED 28.2)

Exercise 1. Prove that $\overline{A} = \bigcap \{F : A \subset F \text{ and } F \text{ is closed}\}.$

Exercise 2. Determine the closure of the set $\{0\}$ in the topology of \mathbb{R} given by $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(x, \infty) : x \in \mathbb{R}\}.$

Exercise 3. Prove Theorem 1.3 in the lecture notes.

Exercise 4. Provide an example where $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Exercise 5. Prove that $\overline{A} = A \cup \operatorname{acc} A$.

Exercise 6. Prove Theorem 1.4 in the lecture notes.

Exercise 7. Let $A, B \subset X$ be two subsets. What is the coarsest topology on X which contains both the sets A and B?

Exercise 8. Let \mathcal{B} and \mathcal{B}' be bases for two topologies \mathcal{T} and \mathcal{T}' on X. Prove that \mathcal{T}' is finer than \mathcal{T} if and only if the following holds:

For each $x \in X$ and each $B \in \mathcal{B}$ such that $x \in B$, there is a $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Exercise 9. Show that $\mathcal{B} = \{(a, b) \subset \mathbb{R} : a, b \in \mathbb{Q}\}$ provides a basis for the standard topology on \mathbb{R} .

Exercise 10. Suppose that X is an infinite set with a topology in which every infinite set is open. Show that X has the discrete topology.

Exercise 11. Given a collection S of subsets of X. Let

 $\mathcal{T} = \bigcap \{ \mathcal{T}' : \mathcal{S} \subset \mathcal{T}' \text{ and } \mathcal{T}' \text{ is a topology of } X \}.$

Check that this defines a topology \mathcal{T} on X.

Exercise 12. Let us consider the collection of open cones pointing towards the right in \mathbb{R}^2 :

$$C_{x_0,y_0,k} := \{ (x,y) \in \mathbb{R}^2 : |y - y_0| < k(x - x_0) \}, \qquad x_0, y_0 \in \mathbb{R}, k > 0.$$

Show that these cones are a basis for a topology on \mathbb{R}^2 (a visual explanation is fine).

Find the closure of some sets in this topology: the origin (0,0), the y-axis $\{(x,y) : x = 0\}$, and the upper half plane $\{(x,y) : y > 0\}$.