Matrix-valued A_{p} weights

For the entirety of this essay we will assume that $1<p<\infty$ and $n, d \in \mathbb{N}_{\geq 1}$. We write $A \lesssim B$, if $A \leq C B$ for some fixed constant $0<C<\infty$. We also write $A \approx B$, if $B \lesssim A \lesssim B$. Furthermore, we denote $A \lesssim p_{1}, \cdots, p_{n} B$, when we allow the implicit constant to depend on the parameters $\left\{p_{1}, \cdots, p_{n}\right\}$.

A matrix-valued function $W: \mathbb{R}^{d} \rightarrow \mathbb{C}^{n \times n}$ is a weight, if it is self-adjoint and almost everywhere positive definite. In this essay we will give two definitions for the matrix-valued analogue of the Muckenhoupt A_{p} weight class and prove that they are equivalent. We will also compare some known matrix weight results with the scalar-valued analogues.

In the scalar-valued case the A_{p} condition implies boundedness for many operators in the weighted L^{p} space. In fact, boundedness of the Hilbert transform in the weighted space gives an equivalent condition. Thus it seems reasonable that the matrix A_{p} condition should be equivalent to the vector valued weighted norm inequality. We extend an operator that is operating on scalar-valued functions to the vector valued setting by taking the mapping component-wise. Let W be a matrix weight and \vec{f} be a vector-valued function on \mathbb{R}^{d}. Then we say that $\vec{f} \in L^{p}(W)$, if

$$
\|f\|_{L^{p}(W)}:=\left(\int_{\mathbb{R}^{d}}\left|W^{\frac{1}{p}}(x) \vec{f}(x)\right|^{p}\right)^{\frac{1}{p}}<\infty
$$

In [TV] it was shown that the boundedness of the Hilbert transform on $L^{2}(W)$ is equivalent to

$$
\begin{equation*}
\sup _{Q}\left|\left(f_{Q} W\right)^{\frac{1}{2}}\left(f_{Q} W^{-1}\right)^{\frac{1}{2}}\right|_{o p}<\infty \tag{1}
\end{equation*}
$$

where the supremum is taken over all cubes.
In order to generalize this for other values of p, we consider norms ρ_{t} on \mathbb{R}^{n} defined by

$$
\rho_{t}(x):=\left|W^{\frac{1}{p}}(t) x\right|
$$

where $t \in \mathbb{R}^{d}$. Recall that the dual norm of a norm ρ is defined by

$$
\rho^{*}(x):=\sup _{y \neq 0} \frac{|\langle x, y\rangle|}{\rho(y)} .
$$

The dual norm of ρ_{t} is

$$
\rho_{t}^{*}(x):=\sup _{y \neq 0} \frac{|\langle x, y\rangle|}{\left|W^{\frac{1}{p}}(t) y\right|}=\left|W^{-\frac{1}{p}}(t) x\right| .
$$

Averaging these norms over a cube $Q \subset \mathbb{R}^{d}$ yields new norms

$$
\rho_{p, Q}(x):=\left(f_{Q} \rho_{t}(x)^{p} \mathrm{~d} t\right)^{\frac{1}{p}} \quad \text { and } \quad \rho_{p^{\prime}, Q}^{*}(x):=\left(f_{Q} \rho_{t}^{*}(x)^{p^{\prime}} \mathrm{d} t\right)^{\frac{1}{p^{\prime}}} .
$$

The condition (1) was generalized in [NT] where it was shown that the boundedness of the Hilbert transform on $L^{p}(W)$ is equivalent to the following definition.
Definition 2. Let $1<p<\infty$. A weight matrix W is a matrix A_{p} weight, if

$$
\rho_{p^{\prime}, Q}^{*} \leq C\left(\rho_{p, Q}\right)^{*},
$$

for every cube $Q \subset \mathbb{R}^{d}$.
Remark 3. Since $\rho_{t}^{*}(x)=\left|W^{-\frac{1}{p}}(t) x\right|=\left|\left(W^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}}(t) x\right|$ and similarly $\rho_{t}(x)=$ $\left|\left(W^{-\frac{p^{\prime}}{p}}\right)^{-\frac{1}{p^{\prime}}}(t) x\right|$, we get that $W \in A_{p}$ is equivalent with $W^{-\frac{p^{\prime}}{p}} \in A_{p^{\prime}}$.
Remark 4. The reverse inequality is true with constant 1. Indeed, by the definition of dual norms and Hölder's inequality we have

$$
|\langle x, y\rangle|=f_{Q}|\langle x, y\rangle| \mathrm{d} t \leq f_{Q} \rho_{t}^{*}(x) \rho_{t}(y) \mathrm{d} t \leq \rho_{p^{\prime}, Q}^{*}(x) \rho_{p, Q}(y)
$$

Then we can move the terms around and take supremums.
Remark 5. In the case $p=2$, the above definition reduces to (1). To see this fix a cube $Q \subset \mathbb{R}^{d}$ and note that

$$
\begin{aligned}
\rho_{2, Q}(x)=\left(f_{Q}\left|W^{\frac{1}{2}}(t) x\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} & =\left(f_{Q}\langle W(t) x, x\rangle \mathrm{d} t\right)^{\frac{1}{2}} \\
& =\left\langle\left(f_{Q} W\right) x, x\right\rangle^{\frac{1}{2}}=\left|\left(f_{Q} W\right)^{\frac{1}{2}} x\right|
\end{aligned}
$$

and hence

$$
\left(\rho_{2, Q}\right)^{*}(y)=\left|\left(f_{Q} W\right)^{-\frac{1}{2}} y\right|
$$

By similar calculations we also have

$$
\rho_{2, Q}^{*}(y)=\left|\left(f_{Q} W^{-1}\right)^{\frac{1}{2}} y\right| .
$$

Thus taking supremums over $y \neq 0$ from both sides of the inequality $\frac{\rho_{2, Q}^{*}}{\left(\rho_{2, Q}\right)^{*}} \leq C$ yields

$$
\left|\left(f_{Q} W\right)^{\frac{1}{2}}\left(f_{Q} W^{-1}\right)^{\frac{1}{2}}\right|_{o p} \leq C
$$

Sometimes it is useful to work with an equivalent A_{p} condition that avoids the norms ρ and can be stated completely using only the matrices W. This condition was introduced in $[R]$.

Definition 6. Let $1<p<\infty$. A weight matrix W is a matrix A_{p} weight, if

$$
f_{Q}\left(f_{Q}\left|W^{\frac{1}{p}}(x) W^{-\frac{1}{p}}(y)\right|_{o p}^{p^{\prime}} \mathrm{d} y\right)^{\frac{p}{p^{\prime}}} \mathrm{d} x \leq C
$$

for every cube $Q \subset \mathbb{R}^{d}$.
Theorem 7. Definitions 2 and 6 are equivalent.
The following classical result from convex geometry is essential in the proof of the above theorem.

Theorem 8 (John ellipsoid theorem [J]). Let $K \subset \mathbb{R}^{n}$ be a compact convex symmetric set. Then there is a closed ellipsoid E centred at the origin such that $E \subset K \subset \sqrt{n} E$.

If ρ is a norm on \mathbb{R}^{n}, then there exists a positive definite self-adjoint matrix A such that $\rho(x) \bar{\sim}_{n}|A x|$. To see this, consider the John ellipsoid E of the ρ-unit ball $\{x: \rho(x) \leq 1\}$. Then choosing A to be the positive definite matrix that maps E to the standard unit ball of \mathbb{R}^{n}, then the John ellipsoid theorem gives

$$
\{x:|A x| \leq 1\}=E \subset\{x: \rho(x) \leq 1\} \subset \sqrt{n} E=\{x:|A x| \leq \sqrt{n}\}
$$

The matrix A is called the reducing matrix of ρ.
We also need the following useful norm lemma.
Lemma 9. Let $\left(e_{i}\right)_{i=1}^{n}$ be an orthonormal basis of \mathbb{R}^{n}. Then for any matrix W and any $p>0$, we have

$$
|W|_{o p}^{p} \bar{\sim}_{n, p} \sum_{i=1}^{n}\left|W e_{i}\right|^{p}
$$

Proof. Denoting $x_{i}:=\left\langle x, e_{i}\right\rangle$ we have

$$
|W|_{o p}^{p}=\sup _{|x| \leq 1}\left|W \sum_{i=1}^{n} x_{i} e_{i}\right|^{p} \lesssim p \sup _{|x| \leq 1}\left|x_{i}\right|^{p} \sum_{i=1}^{n}\left|W e_{i}\right|^{p} \leq \sum_{i=1}^{n}\left|W e_{i}\right|^{p}
$$

and conversely

$$
\sum_{i=1}^{n}\left|W e_{i}\right|^{p} \lesssim n \max _{i=1, \ldots, n}\left|W e_{i}\right|^{p} \leq|W|_{o p}^{p}
$$

Now we are ready to prove theorem 7.

Proof of theorem 7. Let A_{Q} be the reducing matrix of $\rho_{p, Q}$ and B_{Q} be the reducing matrix of $\rho_{p^{\prime}, Q}^{*}$. Then by taking supremums over $y \neq 0$ from both sides of the inequality

$$
\frac{\rho_{p^{\prime}, Q}^{*}}{\left(\rho_{p, Q}\right)^{*}} \leq C
$$

we see that the inequality in definition 2 is equivalent with $\left|A_{Q} B_{Q}\right|_{o p} \leq C$. Thus it suffices to prove that

$$
f_{Q}\left(f_{Q}\left|W^{\frac{1}{p}}(x) W^{-\frac{1}{p}}(y)\right|_{o p}^{p^{\prime}} \mathrm{d} y\right)^{\frac{p}{p^{\prime}}} \mathrm{d} x \bar{\sim}_{n, p}\left|A_{Q} B_{Q}\right|_{o p}^{p}
$$

Note that since $W^{\frac{1}{p}}$ and $W^{-\frac{1}{p}}$ are self-adjoint, we have

$$
\left|W^{\frac{1}{p}}(x) W^{-\frac{1}{p}}(y)\right|_{o p}=\left|W^{-\frac{1}{p}}(y) W^{\frac{1}{p}}(x)\right|_{o p} .
$$

Applying this with the norm lemma yields

$$
\begin{aligned}
f_{Q}\left(f_{Q} \left\lvert\, W^{\frac{1}{p}}\right.\right. & \left.\left.(x) W^{-\frac{1}{p}}(y)\right|_{o p} ^{p^{\prime}} \mathrm{d} y\right)^{\frac{p}{p^{\prime}}} \mathrm{d} x \\
& \approx_{n, p} f_{Q}\left(f_{Q} \sum_{i=1}^{n}\left|W^{-\frac{1}{p}}(y) W^{\frac{1}{p}}(x) e_{i}\right|^{p^{\prime}} \mathrm{d} y\right)^{\frac{p}{p^{\prime}}} \mathrm{d} x \\
& \approx_{n, p} \sum_{i=1}^{n} f_{Q}\left(f_{Q}\left|W^{-\frac{1}{p}}(y) W^{\frac{1}{p}}(x) e_{i}\right|^{p^{\prime}} \mathrm{d} y\right)^{\frac{p}{p^{\prime}}} \mathrm{d} x \\
& =\sum_{i=1}^{n} f_{Q} \rho_{p^{\prime}, Q}^{*}\left(W^{\frac{1}{p}}(x) e_{i}\right)^{p} \mathrm{~d} x
\end{aligned}
$$

The last expression is comparable with

$$
\begin{aligned}
\sum_{i=1}^{n} f_{Q}\left|B_{Q} W^{\frac{1}{p}}(x) e_{i}\right|^{p} \mathrm{~d} x & \approx_{n, p} \sum_{i=1}^{n} f_{Q}\left|W^{\frac{1}{p}}(x) B_{Q} e_{i}\right|^{p} \mathrm{~d} x \\
& =\sum_{i=1}^{n} \rho_{p, Q}\left(B_{Q} e_{i}\right)^{p} \mathrm{~d} x \\
& \approx_{n, p} \sum_{i=1}^{n}\left|A_{Q} B_{Q} e_{i}\right|^{p} \mathrm{~d} x \\
& { }_{n, p}\left|A_{Q} B_{Q}\right|_{o p}^{p}
\end{aligned}
$$

Note that if we assume that W is a scalar weight, then the sharp constant form definition 6 is equal to the scalar A_{p} characteristic. Thus it is natural to define $[W]_{A_{p}}$ to be the sharp constant C from definition 6.

It is well known that in the scalar case the A_{p} condition implies that a general Calderón-Zygmund operator is bounded in the weighted L^{p} space. In fact, in $[\mathrm{H}]$ the following sharp quantitative weighted bound was proven to be true.

Theorem 10 (A_{2} theorem). Let T be a $C Z O$ and $w \in A_{2}$. Then

$$
\|T f\|_{L^{2}(w)} \leq C[w]_{A_{2}}\|f\|_{L^{2}(w)}
$$

where C depends only on T and d.
The dependence on the weight characteristic $[w]_{A_{2}}$ is sharp in the above theorem. In [DGPP] it was proven that this linear A_{2} bound implies the following sharp weighted inequality for all $p>1$.

Theorem 11. Let T be a $C Z O$ and $1 \leq p<\infty$. Then

$$
\|T f\|_{L^{p}(w)} \leq C[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

where $\alpha=\max \left\{1, p^{\prime}-1\right\}$ and C dependes only on T, d and p.
In the matrix case the qualitative version is also true. In fact, in [NPTV] the quantitative A_{2} bound

$$
\|T \vec{f}\|_{L^{2}(W)} \leq C[W]_{A_{2}}^{\frac{3}{2}}\|\vec{f}\|_{L^{2}(W)}
$$

where C depends only on T and d, was shown to be true. Whether one can obtain a linear bound in the matrix case is an open question. Lastly, a similar extrapolation result holds in the matrix case.

Theorem 12 (Rubio de Francia matrix weighted extrapolation [BC]). Let T be a sublinear operator. Suppose that for some $p_{0} \in[1, \infty]$, there exists an increasing function $K_{p_{0}}$ such that for every $W_{0} \in A_{p_{0}}$, we have

$$
\|T \vec{f}\|_{L^{p_{0}}(W)} \leq K_{p_{0}}\left(\left[W_{0}\right]_{A_{p_{0}}}\right)\|\vec{f}\|_{L^{p_{0}}(W)}
$$

Then for all $p \in] 1, \infty\left[\right.$, and for all $W \in A_{p}$, we have

$$
\mid T \vec{f}\left\|_{L^{p}(W)} \leq K_{p}\left(p, p_{0}, n, d,\left[W_{0}\right]_{A_{p}}\right)\right\| \vec{f} \|_{L^{p}(W)}
$$

where

$$
K_{p}\left(p, p_{0}, n, d,\left[W_{0}\right]_{A_{p}}\right)=C\left(p, p_{0}\right) K_{p_{0}}\left(C\left(p, p_{0}, n, d\right)[W]_{A_{p}}^{\max \left\{\frac{p}{p_{0}}, \frac{p^{\prime}}{p_{0}^{\prime}}\right\}}\right)
$$

References

[BC] M. Bownik and D. Cruz-Uribe, Extrapolation and factorization of matrix weights, preprint, arXiv:2210.09443, 2022.
[DGPP] O. Dragičević, L Grafakos, M. C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat., 49(1):73-91, 2005.
[H] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2), 175(3):1473-1506, 2012.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, pages 187-204, 1948. Interscience Publishers, Inc., New York, N. Y., 1948.
[NPTV] F. Nazarov, S. Petermichl, S. Treil, and A. Volberg, Convex body domination and weighted estimates with matrix weights, Adv. Math., 318:279-306, 2017.
[NT] F. Nazarov and S. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8, no. 5, 32-162, 1996; English transl., St. Petersburg Math. J. 8, 721-824, 1996. MR 99d:42026
[R] S. Roudenko, Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355, no. 1, 273-314, 2003.
[TV] S. Treil and A. Volberg, Wavelets and the angle between past and future, J. Funct. Anal. 143, 1997.

