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1 Introduction

In the context of analysis, standard Fourier analysis over Rn is almost always
sufficient. However, in more abstract settings, a more general form of Fourier
analysis can give great insight. For example, the existence on Fourier series
on L2[0, 1) can simply be viewed as the space regular representation of S1 on
L2(S1) decomposing into a direct sum of characters.

This essay will give a small approachable exposition into how to develop this
generalized theory. General Fourier analysis is best developed using the theory
of Banach algebras and in particular, Gelfand theory. However, to keep the
text engaging to anyone with a solid understanding of basic real analysis, most
algebra is omitted. For a rigorous study of the topic, [1] is an excellent reference.

We will first discuss Haar measures, which give a canonical measure on a lo-
cally compact (topological) group G—in the same sense that one might consider
the Lebesgue measure canonical on Rn. After that, we will discuss Pontryagin
duals: the character groups of locally compact abelian (LCA) groups endowed
with the compact-open topology. Finally, we will develop the basic theory on
Fourier analysis on LCA groups.

2 Preliminary notions

Defintion 2.1. We call a topological space G endowed with a group operation
· : G×G→ G a topological group if

G×G→ G, (x, y) 7→ x · y−1

is continuous. We will always denote the identity element of G by 1.

In the following chapters all groups are assumed to be topological and in
particular, ALWAYS Hausdorff, unless the context tells otherwise. This is be-
cause the word ”compact” is really reserved for Hausdorff spaces where it truly
has important meaning. We use the following abbreviations:
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• LC: locally compact

• LCA: locally compact abelian

• CA: compact abelian

We will also let

• Cc(G) = {f : G→ C | f is continuous and has compact support}

• C0(G) = {f : G→ C | f is continuous and vanishes at infinity}

with vanishing at infinity formally meaning that, for every ε > 0, there’s a com-
pact K ⊆ G with the function < ε a.e. on G \K.

The author is lazy, so we frequently use notation like f(g·) to mean the
function x 7→ f(gx). Laziness is also why almost everything is written manually
without environments. The references are also lazy. Sorry not sorry.

We use the following well-known lemma extensively.

Lemma 2.2. Let G be an LC group and let f ∈ Cc(G). Now f is both left
and right uniformly continuous in the sense that for g ∈ G,

∥f(g·)− f∥∞ → 0 and ∥f(·g)− f∥∞ → 0

as g → 1.

Proof. Proposition 2.6. of [1].

Definition 2.3. We call a Borel measure µ on a Hausdorff space X a Radon
measure if it is

1. Locally finite: for all compact K ⊂ X we have µ(K) < +∞.

2. Inner regular on open sets: for all open sets U we have

µ(U) = sup
K⊂U

µ(K)

where the supremum is taken over compact K.

3. Outer regular on Borel sets: for all Borel sets E we have

µ(E) = inf
K⊃E

µ(K)

where the infimum is taken over compact K.
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Also, we recall the Riesz-Markov-Kakutani (RMK) representation theorem
which allows us to replace difficult Radon measures with their corresponding
functionals. This is especially useful when proving the existence and up-to-
scaling uniqueness of Haar measures.

Theorem 2.4. Let X be a locally compact Hausdorff space. Now the map
µ 7→ Iµ, where Iµ(f) =

∫
X
fdµ, gives a bijective correspondence between Radon

measures on X and non-negative linear functionals Cc(X) → R.

3 Haar measures

Although in the other sections we will focus on LCA groups, here we will work
in the full generality of LC groups. This is because despite being not as nice,
the theory of LC groups, and especially compact groups, is an important topic.
For example, most Lie groups are not abelian, yet analysis on them is of great
interest.

Definition 3.1. Let µ be a non-negative Radon measure on a LC group G.
We call µ a left (resp. right) Haar measure if for all g ∈ G and Borel-measurable
E ⊂ G we have

µ(gE) = µ(E) (resp. µ(Eg) = µ(E)).

The theories of left and right Haar measures coincide by symmetry. Fur-
thermore, it’s not difficult to show that if µ is a left Haar measure on G, then
µ′ defined by

µ′(U) = µ(U−1) := µ{g−1 : g ∈ U}

is a right Haar measure on G. In the future we will assume that all Haar mea-
sures are left.

What makes a Haar measure µ especially great is the simple formula∫
G

f(g)dµ(g) =

∫
G

f(xg)dµ(g)

for all x ∈ G and integrable f . This property follows directly from transla-
tion invariance and change of variables but it’s exactly what makes most of the
proofs work.

Theorem 3.2. An LC group G admits a Haar measure.

The proof for the existence of a Haar measure is Theorem 2.10. in [1]; it is
not shown here since it’s quite tedious and frankly, not interesting or related to
harmonic analysis. The idea however is intuitive: For a compact and an open
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set K,U ⊂ G, the collection {gU}g∈G covers K, so by compactness there exist
g1, . . . gN so that {giU}i=1,...,N covers K. Letting (K : U) be smallest such N
and choosing a compact non-empty A ⊂ G we can let µU (K) = (K : U)/(A : U).

Now it’s easy to see that this not-really-a-measure µU is left translation
invariant on compact sets. Also letting U → {1} in some sense, it’s reason-
able to think that µU starts looking like a measure. Now the rest of the proof is
just pure formalizing. We will, however, prove the following important theorem:

Theorem 3.3. Haar measures on an LC group G are unique up to scaling.
That is, if µ and ν are Haar measures on G, then there exists a constant c > 0
such that µ = cν.

Before we get into the proof, we state the following simple lemma, the proof
of which can be found from Proposition 2.19. of [1].

Lemma 3.4. For all nonempty open U ⊆ G we have µ(U) > 0. For all
nonzero, nonnegative f ∈ Cc(G) we have

∫
G
fdµ > 0.

Proof of Theorem 3.3. We follow the proof given in [2]. By Theorem 2.4. it
suffices to show that

Iµ(f)Iν(g)− Iν(f)Iµ(g) = 0

since this rewrites as a ratio. Using Lemma 2.2. we can find, for every 0 < ε < 1
a neighborhood Uε so that

|f − f(·y)| < ε and |g − g(·y)| < ε

in all of G when y ∈ Uε. Furthermore, by sufficiently restricting we may assume
that all the Uε all lie on a compact set K. Finally, by Urysohn’s lemma and
Lemma 2.4. there exists a ψ ∈ Cc(G) supported in K, with

∫
G
ψdµ = 1.

Now, we have∫
G

f (xy)ψ (y) dµ (y) = 1Uε (y) f (xy) = 1Uε (y) f (x) + 1Uε (y)O (ε) .

Taking Iν of both sides and using translation invariance and Fubini’s theorem,
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we find ∫
G

∫
G

f(xy)ψ(y)dµ(y)dν(x) = Iν(f) +O(ε)∫
G

∫
G

f (y)ψ
(
x−1y

)
dµ (y) dν (x) =∫

G

∫
G

f (y)ψ
(
x−1y

)
dν (x) dµ (y) =∫

G

f (y)

(∫
G

ψ
(
x−1y

)
dν (x)

)
dµ (y) =∫

G

f (y)

(∫
G

ψ
(
x−1

)
dν (x)

)
dµ (y) =

Iµ (f) ·
∫
G

ψ
(
x−1

)
dν (x) =

where the O(ε)-term remains that way since Uε ⊆ K and K has finite
measure. Similarly we have

Iµ(g) ·
∫
G

ψ(x−1)dν(x) = Iν(f) +O(ε).

Combining these we find that

(Iµ(f)Iν(g)− Iν(f)Iµ(g)) ·
∫
G

ψ(x−1dν(x) = O(ε).

Finally, ψ(·−1) can be approximated below by a nonzero nonnegative func-
tion in Cc(G), so

∫
G
ψ(x−1)dν(x) > 0 by Lemma 2.4. Now letting ε → 0 gives

us the desired equality. □

Now, let us dive into examples of Haar measures.

Example 3.5. In the discrete topology, compact sets are finite subsets.
Hence if G is discrete, then it’s easy to see that the counting measure gives a
Haar measure on G.

Example 3.6. For any integer n > 0, by construction the Lebesgue mea-
sure µ retricted to Borel sets is a Radon measure. In addition, it’s canonically
translation invariant. Hence we find that µ is a Haar measure on (Rn,+).

Example 3.7. Let G = (R+, ·), the multiplicative group on positive reals.
It’s easy to confirm that

µ(E) =

∫
E

dt

t

gives a Radon measure since 1/t is continuous. In addition, for all (a, b) with
0 < a < b < +∞ we have

µ(ga, gb) =

∫ gb

ga

dt

t
= log

ga

gb
= log

a

b
=

∫ b

a

dt

t
= µ(a, b)
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so a simple measure-theoretic argument gives that µ is a Haar measure on G.

Example 3.8. With similar reasoning, if G = S1, then the measure

µ(E) = λ(arg(E)),

where λ is the Lebesgue measure on [0, 2π), is a Haar measure on G. However,
ν = µ/2π is a much nicer fit for a Haar measure since ν(G) = 1. In fact, we
can turn any Haar measure µ on a compact group G into a probability measure
just by normalizing by µ(G) < +∞!

Example 3.9. A non-abelian example! Let µ be the Lebesgue measure on
Rn×n viewed as Rn2

. Now if G = GLn(R), then by change of variables the
measure

µ(E) =

∫
E

dµ(X)

|detX|n

gives a Haar measure.

4 Pontryagin duality

From now on, all groups are assumed to be abelian.

For an LCA group G, let Ĝ be the group of continuous homomorphisms
G → S1 (characters). For all compact K ⊂ G and U ⊂ S1 we let V (K,U) be

the set of characters χ : G→ S1 with χ(K) ⊆ U . We endow Ĝ with the topology
generated by the subbasis V (K,U) over all K,U ; the compact-open topology.
Now we have the following extraordinary definition-theorem, the proof of which
we will omit due to it being very tedious.

Theorem 4.1. The group Ĝ is a topological group. Furthermore, it’s LCA.
We call this group the Pontryagin dual of G.

As one may guess from the term ”duality”, we also have the following im-
portant fact:

Theorem 4.2. (Pontryagin duality). The pairing ⟨−,−⟩ : G× Ĝ → S1 by

⟨x, χ⟩ = χ(x) gives a canonical isomorphism e : G→ ̂̂
G by x 7→ ⟨x,−⟩.

Example 4.3. When G is a finite LCA group, it must be a finite sum of
Zn’s with discrete topologies. Since Hom interacts nicely with ⊕, it suffices to

only consider the case Zn. Here we instantly see that Ẑn
∼= Zn as topological

groups and going back, that Ĝ ∼= G.

Example 4.4. If G = (Rn,+), then solving the given functional equation,
we find that the characters are given by f(χ) = e2πix·χ for x ∈ R. The group
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operation on G is isomorphic to that of Ĝ, and with a little topological work,
one can verify that these groups are also homeomorphic. Hence we find that
Ĝ ∼= (Rn,+). This identification is usually done directly when working with the
Fourier transform in analysis.

Example 4.5. Similarly, when G = (R+, ·), we can prove that all characters

are of the form γ(z) = zix where x ∈ R. Hence, as groups we have Ĝ ∼= (R,+)
and similarly as topological spaces. This identification is also done directly
when working with the Mellin transform. A simpler way to notice this fact is
by noticing that the topological groups (R+, ·) and (R,+) are isomorphic via

the logarithmic map, and using the fact that the assignmentG→ Ĝ is functorial.

Example 4.6. When G = S1, the characters are given by γ(z) = zn for

n ∈ Z. Hence we see that Ĝ ∼= Z. Furthermore, it can be shown that all
compact abelian groups have a discrete Pontryagin dual. This also gives a
rather interesting way to classify compact abelian groups: All compact abelian
groups can be obtained simply by looking at the characters G→ S1 of a (non-
topological) group G and giving this the topology generated by the subbasis
sets {χ : G→ S1 : χ(K) ⊂ U} where K ⊂ G is finite and U ⊂ S1 open.

5 Fourier analysis

Let us choose a fixed Haar measure for an LCA group G. Now if f ∈ L1(G),

then we can define its Fourier transform f̂ : Ĝ→ C by

f̂(χ) =

∫
G

⟨g, χ⟩f(g)dg.

We denote the linear operator f 7→ f̂ by F , and triangle inequality shows
directly that it sends L1(G) → L0(Ĝ). Furthermore, we have the following ana-
logue of the Riemann-Lebesgue lemma:

Theorem 5.1. (Riemann-Lebesgue) F sends L1(G) → C0(Ĝ).

This map is additionally continuous when C0(Ĝ) is equipped with the topol-
ogy induced by the sup-norm, and Stone-Weierstrass shows that the image is
dense in C0(Ĝ). The proof for Theorem 5.1 using Gelfand theory can be found
from Proposition 4.13. of [1]. However, a far more intuitive proof similar, to
that of the case G = R, can be produced as follows:

Lemma 5.2. For every neighborhood U ⊆ G of 1 there exists a compact
set K ⊆ Ĝ, such that, if χ ∈ Ĝ \K, then there exists x ∈ U with Reχ(x) ≤ 0.

Proof. Theorem H of [3]. The proof is quite straightforward: First it’s proven
that if G and G′ satisfy the lemma, then so does G × G′. Then the lemma is
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proven for CA groups, then LCA groups containing an open CA, and finally for
LCA groups. The lemma is easy to verify directly for, for example, the special
cases G = Rn, S1.

Proof of Theorem 5.1. The proof for continuity is omitted but should be
possible to do as with G = R, just with harsher topological consideration.
With a sufficiently nice condition of G, like first countability, the proof can be
replicated completely. The proof for the vanishing is similar to the case G = R:
Let ε > 0 and let U ⊆ G be a neighborhood of 1 such that ∥f − f(·y−1)∥1 < ε
for all y ∈ U . Now we can choose K,χ and x as in Lemma 4.1. so we get

χ(x)f̂(χ) =

∫
G

χ(gx)f(g)dg =

∫
G

χ(g)f(gx−1)dg.

Now we find that

f̂(χ)(1− χ(x)) =

∫
G

χ(g)(f(g)− f(gx−1)dg

so by triangle inequality

|f̂ | · |1− χ(x)| ≤ ∥f − f(·x−1)∥1 < ε.

Furthermore, the condition Reχ(x) ≤ 0 forces |1− χ(x)| ≥ 1, so |f̂(χ)| < ε for

all χ ∈ Ĝ \K. But now this is exactly the definition of C0(Ĝ)! □

From the Riemann-Lebesgue lemma one can also deduce the Fourier inver-
sion theorems.

Theorem 5.3. Let f ∈ L1(G) and f̂ ∈ L1(Ĝ). There exists a Haar measure

on Ĝ such that

f(g) =

∫
Ĝ

⟨g, χ⟩f̂(χ)dχ a.e..

For f continuous, this holds everywhere.

Proof. Theorem 4.32. of [1]

Independently of Theorem 5.2, as in [4], one can also show that f ∈ L1(G)∩
L2(G) implies ∥f̂∥2 ≤ ∥f∥2. From here we can extend F into an operator

L2(G) → L2(Ĝ) and show that Fourier inversion and Plancherel’s theorem also
hold in arbitrary LCA groups.

Theorem 5.4. Let f ∈ L2(G), and hence f̂ ∈ L2(Ĝ). Now there exists a

Haar measure on Ĝ such that

f(g) =

∫
Ĝ

⟨g, χ⟩f̂(χ)dχ a.e..
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For f continuous, this holds everywhere.

Proof. Theorem 3.3 of [4]

Theorem 5.5. (Plancherel) F : L2(G) → L2(Ĝ) is a linear isometry.

Proof. Theorem 3.4 of [4].

A cousin of Plancherel, the (almost) Hausdorff-Young inequality, also holds
for LCA groups. If f ∈ Lp with 1 ≤ p ≤ 2, and 1

p + 1
q = 1, then

∥f̂∥q ≤ ∥f∥p.

In particular, f̂ ∈ Lq(Ĝ) so F maps Lp(G) → Lq(Ĝ). This theorem follows

directly from the Riesz-Thorin interpolation theorem, using ∥f̂∥∞ ≤ ∥f∥1 and

∥f̂∥2 ≤ ∥f∥2.

We can also define convolution as in the real case. If f, g ∈ L1(G), then we
can let

(f ∗ g)(x) =
∫
G

f(y)g(xy−1)dy =

∫
G

f(xy−1)g(y)dy = (g ∗ f)(x)

where the second equality follows from translation invariance. Triangle inequal-
ity and Fubini’s theorem directly give that

∥f ∗ g∥1 ≤ ∥f∥1 · ∥g∥1.

Furthermore, [5] gives us Young’s convolution inequality: If f ∈ Lp(G), g ∈
Lq(G) where 1 ≤ p, q, r ≤ ∞ with

1

p
+

1

q
=

1

r
+ 1,

then
∥f ∗ g∥r ≤ ∥f∥p · ∥g∥q.

In particular, f ∗ g ∈ Lr(G).

Theorem 5.6. If f, g ∈ L2(G), then

f̂ ∗ g = f̂ · ĝ.

Proof. Proposition 4.36 of [1].

In total, the compatibility of the Fourier transform and convolution is pre-
served even when generalizing to LCA groups.
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Example 5.7. Let G is a finite LCA group, and hence with discrete topol-
ogy, and f : G → C. The Fourier transform in this case is simply the Fourier
transform for finite abelian groups

f̂(χ) =
∑
g∈G

f(g)χ(g).

Example 5.8. In the Euclidean case G = Rn, the identification Ĝ ∼= Rn

gives us the classical Fourier transform

f(ξ) =

∫
Rn

f(x)e−2πix·ξdx.

Example 5.9. When G = (R+, ·), then we found that the Haar measure is

dt/t. Also we found that Ĝ can be identified with iR by having the character
z → zix correspond to ix. Now with this identification, we have

f̂(x) =

∫ ∞

0

zi(ix)f(z)
dz

dt
=

∫ ∞

0

zx−1f(z)dz.

But now this is simply the Mellin transform of f . Especially the case f = e−x

is interesting where f̂ is the Gamma function Γ from number theory.

Example 5.10. If G = Z, then Ĝ ∼= S1 by identifying the character n →
e2πin with e2πin. Furthermore, this can be identified with R/Z, the real numbers
with period 1. In this case, the Fourier transform gives us the standard Fourier
series

f̂(z) =
∑
n∈Z

e−2πinf(n).

In conclusion, most simple and desirable properties of the standard Fourier
transform, which do not run into well-definedness issues right away, also gen-
eralize for the general Fourier transform. This not only lets us unify all of the
special instances of the above Fourier transforms under one theory, but it also
gives great tools for many other fields which are, unfortunately, too broad to be
discussed in this essay.
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