SOME TOPICS ON CARLESON MEASURES

ZHAN ZHANG

1. INTRODUCTION

This essay is mainly based on a serials of Brett D.Wick’s lectures on Multi pa-
rameter Harmonic Analysis[1, 2, 3, 4]. In this essay we will introduce some examples
of Carleson Measures both in one parameter and multi parameter situation and add
some details which lectures did not mentioned carefully. And we need to claim that
the essay did not cover every topics in the lectures for reason of the length of the
essay, but only some parts we interested with.

As the beginning we would give a brief introduction of Carleson measures. Car-
leson measures were first introduced in 1960s by L.Carlseon to solve the corona
problem|[8] and were named after him. Carleson measures have many applications
in harmonic analysis and the theory of partial differential equations. Then we start
with an initial definition of Carleson measures.

Definition 1 ([7]). A positive measure o on upper half plane H is called a Carleson
measure if there is a constant N (o) such that

o(Q) < N(o)h

for all squares
Q={zo<z<z+h,0<y<h}.

The smallest such constant N (o) is the Carleson norm of o.

In practise, we more often use its embedding property to characterise a Carleson
measure, like

Theorem 1 (Theorem 3.9 of [7]). Let o be a positive measure in the upper half
plane H. Then the following are equivalent:

(a): o is a Carleson measure: for some constant N (o),
o(Q) < N(o)h
for all squares
Q={xo<z<z0+h,0<y<h}.
(b): For 0 <p < o0,

/ fiPdo < Alf|t,,  fe B

(c): For somep, 0 <p < oo, f € LP(o) for all f € HP.

And we need to note that carleson measures can also be defined on D or R", we
will mention these cases in the following sections.
1
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2. CARLESON MEASURES FOR H?(DD)

2.1. some properties of H?(D). We start with the introduction of Hardy space
H?(D).

Definition 2. For a holomorphic function f, f € H?(D) if

11220 == sup / |F(rei®) 2dm(6) < oo
0<r<1JT

where m(0) is a normalized measure.

A good property of H?(ID) is the norms of functions in it can be represented in
an easier form. Recalling this, for a function f(z) = Y77 a,z" € L*(T) we have

sup / F (rei®) 2dm(0)

0<r<1

o0
= sup /\Zanr"eme|2dm(9)
T n=0
o0

1£ 12y

0<r<1

— sup Z anmrnrm/ei(nfm)edm(e)
0 T

O<T<1nnn:

oo
= D laal?
n=0

where the last equation is because of

in—m)o g, (g l:n=m
/Te m(){O:n;«ém

This property means that it is possible to study the behavior of the functions in
H?((D)) via their Fourier coefficients. By this property we can check the following
lemma quickly.

Lemma 1. For 0 <r <1 and z € D let f.(z) = f(rz). Suppose that f € H*(D).
Then, the sequence {f,} is Cauchy in L*(T).

Proof. Note that H? is a complete space. Which means that the sequence in it is
Cauchy, implies that for every positive real number b > 0 there is a positive NV such
that for all f,,, fn € {f+} and m,n > N

b > |fm — falluzm)
> Nlfmllzzm) = [l 2ol

o0 o0
Z Imia;|* — Z In‘a;|?
i=0 i=0

2

oo
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And
o 2
Vo = Fall ey = /Zm ~ni)agzi| dm(z)
i=0
< b/ Zzl
Tli=0

which is convergence when z € T. Since b is arbitrary, then {f.} is Cauchy in
L?(T). O

Now since L?(T) is a complete space, For f.s in L?(T), the function f* denoted
by f* :=lim,_, f, is also in L?(T). Then we can compute the Fourier coefficients

of f*.
/ f 19 7zn6' (9)
_ : 10 —in6
= i [ f(e e dm()
ap :n>0

o { 0:n<0’
Then by Parseval theorem, or say Plancherel identity, we have the following propo-
sition.

7 (n)

Proposition 1. Suppose that f € H*(D) and f*(e?) = lim,_; f(re'®) then

oo

||f\|%r2(1n>) = Z |@n|2 = Hf*||2L2(T)

n=0

And there is another norm on H?(D) This equivalent norm will prove useful when
we we study the space of Carleson measures for H2(ID). With it we can generate a
natural family of examples of functions which generate Carleson measures.

At first, we recall the Green formula on the unit ball D and unit circle T.

Lemma 2. Green’s formula:

/ ()dm(¢) / Au(z log A( ).
T
Proof. Set v(z) = log ﬁ By [9], Theorem 1.3.1, we have

/T w(v) — v(vu)do = / (uhv — vAu)dA.

D
where do denote area measure on T and v be the unit outward normal vector on
T. And then use [9], Proposition 1.3.2, which implies what we desired. O

Then for a function g € L*(T), the gradient of g is denoted by Vg = (8.9, 9,9)
and when ¢ is an analytic function, by the definition of gradient
Vg(2)[* = [0.9(x, y)|* + |0,9(x, y)
we have

Vg(2)]* = 9g(2)]* = 1g'(2)I”

since there is no other variants. Then we introduce a Littlewood-Paley Identity.
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Lemma 3. Lemma 2.2 of [2] Suppose that g € L'(T) and if g(0) = [ gdm then

/ Vg(z |21og—dA / 19— g(0)Pdm = / |g\2dm 19(0) 2.

By some rearrangement, then follows the equivalent norm
Proposition 2. Suppose that f € H?(D) then we have
1
oy = LFO)F +2 [ 19'(:) 1og T-dA(:).
2.2. Carleson embedding theorem. And then we introduce the Carleson em-
bedding theorem on H?(DD):

Theorem 2. Let p a non-negative measure in D. Then the following are equivalent.
(i): The embedding operator J : L*(T) — L*(D, ), with J(f)(z) = f(2), is
bounded.

(ii): C(H)2 ‘= SUD.ecp |‘~7EZ||%2(H) = SUD.ecp HPZHLl(u) < oo, where ]_CZ(C) =
%, the reproducing kernel for the Hardy space H*(D).

(iii): I, = sup{2p(D)NQ((,7) : v > 0,( € T} < oo, where Q(¢,r) is a ball
measured with respect to the non-isotropic metric associated on .

Moreover, the following inequalities hold
Cp) < ITN < 4C ()

and
321(n) < C(u)® < 321(p)

Since (i)« (iii) is [1]’s main content, we only show (ii)<(iii) here
Proof. Suppose (ii) is true first, then
(1-|2P)
P, (¢)du( ——=d
/ )dp(¢ / FEE 1(<)-

For § € T and r € (0,2), set z = (1 — )& now consider the non-isotropic ball Q(&,)
introduced by non-isotropic metric:

d(z,¢) = 1 — =(["/2.
Then z € Q(&, 7). For z,{ € Q(&, 1), by triangle inequality we have
122 < 1= 2€]M2 4 1 - g
Squaring the above inequality, get
1—2¢| < 2(|1 - 2] + 1 - ¢€)) < 4r

With this estimate, we have

S

(112
A )
> /DmQ(g,r) TRE (<)
167521 — d
r—4( |Z|)/DmQ(§,r) 1(Q)
= 16721 - [zhu@NQ(E, )

\%

v
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Taking the supremum of r over (0,2) in the last inequality above and get
3271 (p) < C(p)?

Now suppose that (iii) is true, since the situation farer away from T is often
more clear. We will separate the question into two cases: |z| < 2 and |z| > 2 (We
note that we choose 2 here is propose to get the estimate 32711(n) > C(p)?, one
can also choose other positive numbers less than 1).

(1)-]z] < 3

Recall following inequality holding for the Poisson kernel

Q) 1P e 4
{O= T2 STl - =P = A

Then since |z| < 3

26
[ Petwidute) < Zum)
D

A

26
~2(D N Q. 2)
201 ()

IN

(2).]2] > %
Define the normalized 2/ = ﬁ and

Qr:=DNQ(,2" (1 —|2]?) VkeN
Then for w € Q41 C Qf we have
|1 —wz!| > 2" — |2]%).
By triangle inequality we have

I1—w2|'? < 1—wz'?+|1- 222
= [1—wz'?+ (12"
1= w22 4 (1= |22

A

Squaring the last inequality, get
11— wz'| <2(]1 —wz| + (1 - |2]*))
which implies

271 —wa| - (1 - [2*)
21— 12 = (1= |2P)
21— |2

|1 —2z|

VvV IV IV
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When w € Qi+1 \ Qk, we have

[rw = [ RECLITEDY /Q L, Pwds

T a-p
: /Q = ”Z/Qmwk 11— )

k=1

1 Qrt1)
1—=1z2)

o0

g M&) w(Qr)
(1—1z[*)

IN

oo

< 16I(p) +8I(p Z 27k < 321 (p

O

2.3. Uchiyama’s Lemma. First we introduce a lemma which is related with em-
bedding theorem on H?(DD).

Lemma 4 (Uchiyama’s Lemma). Let ¢ be a non-negative, bounded, subharmonic
function. Then for any f € H*(D)

/D Ap(2)|£(2)du(2) < llloo 12

where dp = 2 log ﬁdA(z), and A = 1A =00

Proof. Since ¢ is homogeneous, we can assume without loss of generality that
llloc =1, i.e. at the both side of equation, Ay and |||l have the same constant
coeflicients. By directly computation we have,

A(e?@)|f(2)]7) = e? Ap| £ + €?|0pf + Of* > Ayl f?

integrate above inequation over D then use Green’s formula,
[BelfePane) < [ Al
D D
= [ Ol dm(c) - O 0)
T
e [1Q)Pdm(c) = el 1|
T

IN

O

We note that if change ¢ to a constant function, it is easy to see that above
lemma can imply the embedding L2 (D) — H?*(D)

/D F()Pdu(z) < © / FOdm(C)

3. CARLESON MEASURES IN BI-DISC D?

3.1. Decompositions. When researching Carleson measures, an often-used tech-
nique is to decompose the region where the Carleson measures on. There are many
ways to decompose the region, e.g. Carleson tents, Carleson boxes, Carleson rect-
angles and so on. In practice, we can choose a most convinent decomposition to
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solve our problems. To decompose we usually need a lattice to satisfy a covering
lemma like what follows.

Lemma 5 (Theorem 2.23 in [11]). There exists a positive N such that for any
0 <7 <1 we can find a sequence {ar} in D with the following properties.

(1): D = UpA(ag,r);

(2): The set Alag,r/4) are mutually disjoint;

(3): Each point z € D belongs to at most N of the sets Aay,2r).

Which is a decomposition of D, to decompose other regions is similar to this.
Now we introduce the Carleson tent. There are different ways to construct a
Carleson tent. Let () C R™ be a cube and let

T(Q)={(z,y):z€Q, 0=<y<{Q)}

With this decomposition, we can give a definition of Carleson measure.

Definition 3. A measure p is a Carleson measure if for all cubes Q C R™, there
is a constant C' such that

(1) wT(Q) < Cle)|

And we also have another way by which we can define a Carleson measure. For
simplicity, we consider case n = 1.

Definition 4. Let Q C R be an arbitrary open set. Then a measure is Carleson if
for all open sets QU there is a C such that

(2) w(T(82)) < Q.
And then we show that in fact those two definitions are same.
Lemma 6. (1) and(2) are equivalent.

Proof. Tt is clear that if (2) holds then so does (1).
Suppose that (1) holds. Since 2 is a open set in R, by some decompositions like
Lemma 5 there exists disjoint open intervals {I;} such that Q = UI}, then

w(T(Q) < wTUI))
< > uT(I)

A

IN

CY |l =9
k

which implies (4), as desired. d

Also, a similar argument applies when Q C R” like [5].

Now we have two possible way to study Carleson measures in one-parameter.
We can either form a tent over arbitrary open sets like (4), or we can form the tent
over cubes like (3). This suggests that we also have two different ways to construct
Carleson tents in the multi-parameter setting.

For simplicity, we consider the case when {2 C R™ is open. One possible candidate
is

(3) w(T(R)) < C|R| for VR=1 x J
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Here the tent over the rectangle R is given by T(R) = T'(I) x T(J). Another
possible candidate is

(4) w(T(Q)) < C|Q| for ¥Q C R?

Then we consider whether these two definitions are equivalent. Again, it is
immediate that (4) implies (3). But it is not clear that whether (3) could imply
(4). In fact, Carleson gives a counter example about (3), which means (3) is a
weaker condition.

Theorem 3 (Carleson,[8]). There exists a measure p such that
w(T(R)) < CIR| forVR=1 X J.
but
[ e wlPdutzw) <€) [ 1 9)Pdeds for v € L)
D? T2

3.2. An example on bidisc D?. In this section, for simplicity, we focus on the
case of the bidisc D?.

First, recall that for an open subset Q C T?, we form the tent over €2 to be the
union of the products of the rectangles R = I x J with I,J C T and I on the
boundary of the first disc, J on the boundary of another, and R C €.

S = |J su) xs).
RCQ
where S(I) is the one-parameter tent over the interval I which we defined in last
subsection.
Now we introduce a example of multi-parameter Carleson measure on bi-disc D?.

Theorem 4 (Chang[10], Fefferman[6]). Let f € L>(T?), and let v(z,w) denote the
multiple Poisson extension of f to the bidisc D?. Then for every open set Q C T2
we have
/ \Vszv(z,w)\2logLlogidA(z)dA(w) <19
S(Q) |2| |w]

There are two different way to prove this theorem given separately by Chang[10]
and Fefferman[6]. Lecture[4] introduced the approach by Fefferman, which mainly
reformed A Aq(p(u)(v)) = Zi,j—o @ ¥ I (u,v) (where Ir; is an expression
involving derivatives of the functions u and v) and consider the situations of Ij;s
separately.

Since Fefferman’s method has been introduced vividly in [4], we will not mention
it much here. For completeness, in this essay, we will introduce another approach
by Chang[10]. Briefly speaking, he used a specialized decomposition with many
useful properties to finish the proof. The original theorem of Chang is in the form
like:

Theorem 5. For a function f € L*°(T), the measure

1 1
dug(z1, 22) = |Vu(z, 22)\2 log |z—1\ log \z_2|

is a Carleson measure on the bi-disc, where u is the bi-harmonic extension of f,

and
Vu(en, ) = (] ) (1.22).

le dZQ dfl dfg

n 0%u
07107

n 0%u
071029

0%u
02107

0%u
(921822

2 ‘ 2 ‘ 2 ‘
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And here is some notations. Let R} = {z =z +iyly > 0} denote the upper half
plane. For each z = z+iy € RY, let I, denote the interval {s||s—z| < y} on the real
line R. For each connected open set U C R? = RxR, define S(U) the region {z|U, C
U}. Given a function f € L*(R?), let u(z1 +iy1, 2 +iys) = (Py, * (Py, x f))(z1, 22)

denote itsnbi-harmonic extension to Ry x R3, where P, (z) = %zﬁy? is the Poisson

kernel. Then we can reform Theorem 5 to
Theorem 6. For a function f € L>°(R?)N L' (R?), the measure
dus(z1,22) = |Vu(z1, 22)|Py1yedrr dys dradys

satisfies

(5) // ds(z1,29) < C|U| for all open connected sets U in R?.
s(U)

where C' is a constant only depending on the bound of f.

Then we construct a decomposition on R?. Fix a connected open set U C R?,
let intervals I and J denote separately the projections of U to its first and second
coordinate. Fix a point z1 € I, 0 < ¢y < d(z1,1°), (where I¢ is the complement
of I and d denotes the Euclidean distance). When y; > 0, let {J5, 4, ¢}¢ denote
the collection of maximal disjoint intervals such that {1} x J;, 00 C U. For each
x1,Y2, 4, let Cy, 4, ¢ be the centre of J,, 4, ¢ and define

| Jzs e |
T A= 1,Y1,
non) Ze: (Carne =1 + [z e

2f0rt€R

For each a > 0, let
Exlvyha = {t € R|Tﬂc1,y1 (t) > Oé}.

Then with the following lemma we can estimate E, 4, o

Lemma 7 (Lemma 1 of [10]). |Ey, 4.0l < (C/a'?)3, 1Ty .0l where C s a
universal constant.

And other useful properties of E, 4,

Lemma 8 (Lemma 2 of [10]).
(a): If a > B, then By, 10 C Euy gy, -
(b): If a < 1/2, then Ey, .0 D Uy Juy 1,0, where J means the interval with

the same centre as J but twice its length.
(¢): Firz1€I,0<a<1/2, let

Fopo = U B 1,0
0<y1 <d(z1,I°)

Fﬂﬂl,a \ U J$1,0,€ C Eam,O,oz/S-
¢

(d): For each 0 < o < 1/2, let Uy = U,,c;({71} X Fiy.0). For each t €
Umlel Fyi o, let It o denote the collection of mazimal intervals such that

It o x {t} C Uy and I}, is the interval in I o which contains x1, then

te Em;yl,a =1y < d(mh (Iz;/8>c)'

(e): |Ua| < (2+ (C/a?))|U| for each 0 < o < 1/2.
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then with these we can begin to prove (5). Assume f is real-valued. Then

consider
9% |? 9?u |? 9% |? 92 |?

v 2 = )

| U(Zh 22)| (’ 021029 ‘ 02107 + ‘ 071029 * ‘ 07107 (Zl, 22)
take z = x + iy, we get

%u |? 9%2u |2 9%u |? ?u |?

\Y Y1, Tot+iye) |2 = ,72).
\ u(x14+iy1, xotiys)| ( 92101 ‘axlayZ + ‘aylaxZ ‘511/133/2 (21, 22)

8%u

2
. Proof on other three terms
arlamg

Then we only need to consider the term
are same.

For the fixed open, connected set U, let J;* , denote the interval J;, 4, ¢ which

contains x3. Then integrate by parts we get

//S(U)
d(w1,T¢)
Lh

Fix x1, 41, consider the middle term

I2 c

d(@2,J5 y, 0)
AiEhyl = / /
U 0

Choose some 0 < ag < 1/2 and write f = f(}?yl + f(??yl, where

2

0%u
y1y2dr1dydradys

a$18I2

(@i + iy, T2 + iy2)

d(z2’< 1,91, k) ) . . 2
/ ’8 (w5 +iy1, 22 +iy2)| yodys | dva | yrdyrda,
0 21022

z1,y1,¢

2

0%u
yadyadxa

(91‘18332

Jaq,yq.0

fx(}?yl = fXRXEml,yl,a()? fz(??yl = f fml Y1 ©

Then we consider fgc1 s let AJcl yl,Agfl 4 be the bame form as Az, 4, with respect

to the bi-harmonic extensions ug;ll),yl, 121),1,1 of fgg1 "y and fﬁ)yl separately. Then

(1)
2u ) .
A'gvll)yl < // 8351%13?21 (25 + iy1, T2 + iyo)|*yodyady
2
82ux
< Z PO e 4 B dE
s || riny

2
dt.

A

-
8331 1 Y1,

J

Here u(wll{yl, u respectively denotes the harmonic extension in ¢ to R? of the func-

T1:Y1,20

tions fﬁ)yl (x1 + iy1,t) and f(z1 + iy1,t). Thus by inequality above, change the
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order of integrate, Lemma 8 (d) we have

d(z1,1°)
/ / AL yidyrdan

d(:L’l,I) 2
§ // / :El +Zy15t) dtyldyldl’l
Il Y1,aQ
ou ) 2
S 8—($1 +@y17t) y1dyy | dtdxy
I JUo<y<a(ay,1¢) ey y1.00 {Y11t€EE, 1y a0} 1
d(I1,(It L /8) ) ) 9
5 // (/ ) 8—u($1 +iy17t) y1dy1 dtd(El
Uqy 0 X1
Z1, Itla /8)6) b 2
< // (/ 0 ‘a_u(xl +1y1,t) yldy1> dtdz
Uag/s Z1
$1,(It « /8) ) au 9
- / / / 0 ‘a(xl +iy1,t)| yidyr | didzy
Jag/s Y t,ag/8 T
S W [ raslde = Vasll 1

JaO/S

where .J,,, /s is the set which is the projection of J,, /s mapping on t(the second
coordinate).

And then we estimate the second term Aﬁ),yl. Again, let u3(1-21)7y1,u denote the

harmonic extension in the ¢ variable of fﬁf)yl (1 +iy1,t), f(x1 +iy1,t) respectively.
Then by directly gradient calculate we get

9*ul?) 0 uayy, |(Ou? yl/axl)(iﬁ + iy, t)]
: : )| < ’ 2
T AR D I (12 — )% + 12
g / (0001 + 1),
(Bayyy00)° (z2 — 1) + y5

By Lemma 8 (b), t € (Ey, 4,.a)° implies ¢ € (Ue LMM,O‘)C Which implies that
for o € Jy, 410 and y2 < d(z2, (JF2, ,)°), one has (z2 — t)% +y3 > (C22

z1,y1,¢ z1,y1,0

)2+ |J;2 . o (vecall that Cy, 4, ¢ is the centre of J;, 4, ¢). By this inequality and
directly estimate we get

3,722, 0 | 92 2
T1 +iy1, T2 +iy2)| y2dy2
/0 ‘3%3 2( ! ! )
_ ‘8u/8x1(m1 +iy, )07, ‘dt
- B ey (Cargne =2+ 1T50 4l
ou . 2 To .
S / 7($1 + iy1,t) = 5131)7?}1’ "y dt
B w100 1 z1,y1,¢ z1,y1,¢
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2
Recalling that Ty, ., (t) =, (CzlTylw‘l"j;)’gfl!]%yMIQ for t € R, thus
(2) < ou . 2
AI1,?J1 ~ . 87.%‘1(‘%1 + 1y, t) Ty (t)dt

1,¥1,20

By 8 (a), choose a decreasing sequence «,, which tends to zero, by the definition
of Fz, y1,a,S One has

0o 2
ou .
A(I%),yl Sf Z/C ‘a—xl(xl +Zy17t) Tzhyl (t)dt
n=1 Emlvylvan\xlvylvo‘n—l
o) au 2
< Zan—l/E a—lj(m1+ly1’t) dt
n=1 T1,Y1:n
Hence
d(z1,I) 0
/ / AP pdyidey <) B,
I1J0 n=1
where
d(x1,I°) ou 2
B, = a,-1 // / a—(l'l + iyl,t) dtyldyldxl
1J0 E x1

T1:Y1,%n

And one can estimate B,, by the same way used to estimate Agﬁyl. Then get

Bn < an—1|Uan/8|||ino'

With these estimates above and 8 (e), get

8%181‘2

0%u =
//S( )|7|2y1y2dy1dy2dm1dx2 S | Uagysl + Z%L—1|Uan/8| 1£11%
U

n=1

S qlUl

~

And sodo this to other three terms, which implies what we desired.

1

2

[4

4. CONCLUSION

In this essay, we introduced Carleson measures on H?(D) and Carleson measures
on bi-disc D? respectively as an example of single-parameter Carleson measures and
multi-parameter Carleson measures. By this examples we find that when in the case
of multi-parameters, many properties and techniques is still valid or has a multi-
parameter edition. But even in the space simple as D?, calculate is much more
complicated than one-parameter cases. Also, choose a proper decomposition will
make the proof easier.
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