
SOME TOPICS ON CARLESON MEASURES
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1. Introduction

This essay is mainly based on a serials of Brett D.Wick’s lectures on Multi pa-
rameter Harmonic Analysis[1, 2, 3, 4]. In this essay we will introduce some examples
of Carleson Measures both in one parameter and multi parameter situation and add
some details which lectures did not mentioned carefully. And we need to claim that
the essay did not cover every topics in the lectures for reason of the length of the
essay, but only some parts we interested with.

As the beginning we would give a brief introduction of Carleson measures. Car-
leson measures were first introduced in 1960s by L.Carlseon to solve the corona
problem[8] and were named after him. Carleson measures have many applications
in harmonic analysis and the theory of partial differential equations. Then we start
with an initial definition of Carleson measures.

Definition 1 ([7]). A positive measure σ on upper half plane H is called a Carleson
measure if there is a constant N(σ) such that

σ(Q) ≤ N(σ)h

for all squares

Q = {x0 < x < x0 + h, 0 < y < h}.
The smallest such constant N(σ) is the Carleson norm of σ.

In practise, we more often use its embedding property to characterise a Carleson
measure, like

Theorem 1 (Theorem 3.9 of [7]). Let σ be a positive measure in the upper half
plane H. Then the following are equivalent:

(a): σ is a Carleson measure: for some constant N(σ),

σ(Q) ≤ N(σ)h

for all squares

Q = {x0 < x < x0 + h, 0 < y < h}.

(b): For 0 < p < ∞,
󰁝

|f |pdσ ≤ A󰀂f󰀂pHp , f ∈ Hp

(c): For some p, 0 < p < ∞, f ∈ Lp(σ) for all f ∈ Hp.

And we need to note that carleson measures can also be defined on D or Rn, we
will mention these cases in the following sections.
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2. Carleson measures for H2(D)

2.1. some properties of H2(D). We start with the introduction of Hardy space
H2(D).

Definition 2. For a holomorphic function f , f ∈ H2(D) if

󰀂f󰀂2H2(D) := sup
0<r<1

󰁝

T
|f(reiθ)|2dm(θ) < ∞

where m(θ) is a normalized measure.

A good property of H2(D) is the norms of functions in it can be represented in
an easier form. Recalling this, for a function f(z) =

󰁓∞
n=0 anz

n ∈ L2(T) we have

󰀂f󰀂2H2(D) = sup
0<r<1

󰁝

T
|f(reiθ)|2dm(θ)

= sup
0<r<1

󰁝

T
|

∞󰁛

n=0

anr
neinθ|2dm(θ)

= sup
0<r<1

∞󰁛

n,m=0

anamrnrm
󰁝

T
ei(n−m)θdm(θ)

=

∞󰁛

n=0

|an|2,

where the last equation is because of

󰁝

T
ei(n−m)θdm(θ) =

󰀝
1 : n = m

0 : n ∕= m

This property means that it is possible to study the behavior of the functions in
H2((D)) via their Fourier coefficients. By this property we can check the following
lemma quickly.

Lemma 1. For 0 < r < 1 and z ∈ D let fr(z) = f(rz). Suppose that f ∈ H2(D).
Then, the sequence {fr} is Cauchy in L2(T).

Proof. Note that H2 is a complete space. Which means that the sequence in it is
Cauchy, implies that for every positive real number b > 0 there is a positive N such
that for all fm, fn ∈ {fr} and m,n > N

b > 󰀂fm − fn󰀂H2(D)

≥ |󰀂fm󰀂H2(D) − 󰀂fn󰀂H2(D)|

=

󰀏󰀏󰀏󰀏󰀏

∞󰁛

i=0

|miai|2 −
∞󰁛

i=0

|niai|2
󰀏󰀏󰀏󰀏󰀏

≥

󰀏󰀏󰀏󰀏󰀏

∞󰁛

i=0

(mi − ni)ai

󰀏󰀏󰀏󰀏󰀏

2
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And

󰀂fm − fn󰀂L2(T) =

󰁝

T

󰀏󰀏󰀏󰀏󰀏

∞󰁛

i=0

(mi − ni)aiz
i

󰀏󰀏󰀏󰀏󰀏

2

dm(z)

≤ b

󰁝

T

󰀏󰀏󰀏󰀏󰀏

∞󰁛

i=0

zi

󰀏󰀏󰀏󰀏󰀏

2

dm(z).

which is convergence when z ∈ T. Since b is arbitrary, then {fr} is Cauchy in
L2(T). □

Now since L2(T) is a complete space, For frs in L2(T), the function f∗ denoted
by f∗ := limr→1 fr is also in L2(T). Then we can compute the Fourier coefficients
of f∗.

󰁦f∗(n) =

󰁝

T
f∗(eiθe−inθ)dm(θ)

= lim
r→1

󰁝

T
fr(e

iθe−inθ)dm(θ)

=

󰀝
an : n ≥ 0

0 : n < 0
.

Then by Parseval theorem, or say Plancherel identity, we have the following propo-
sition.

Proposition 1. Suppose that f ∈ H2(D) and f∗(eiθ) = limr→1 f(re
iθ) then

󰀂f󰀂2H2(D) =

∞󰁛

n=0

|an|2 = 󰀂f∗󰀂2L2(T).

And there is another norm onH2(D) This equivalent norm will prove useful when
we we study the space of Carleson measures for H2(D). With it we can generate a
natural family of examples of functions which generate Carleson measures.

At first, we recall the Green formula on the unit ball D and unit circle T.

Lemma 2. Green’s formula:
󰁝

T
u(ζ)dm(ζ)− u(0) =

󰁝

D
∆u(z) log

1

|z|dA(z).

Proof. Set v(z) = log 1
|z| . By [9], Theorem 1.3.1, we have

󰁝

T
u(νv)− v(νu)dσ =

󰁝

D
(u∆v − v∆u)dA.

where dσ denote area measure on T and ν be the unit outward normal vector on
T. And then use [9], Proposition 1.3.2, which implies what we desired. □

Then for a function g ∈ L1(T), the gradient of g is denoted by ∇g = (∂xg, ∂yg)
and when g is an analytic function, by the definition of gradient

|∇g(z)|2 = |∂xg(x, y)|2 + |∂yg(x, y)|2

we have
|∇g(z)|2 = |∂g(z)|2 = |g′(z)|2

since there is no other variants. Then we introduce a Littlewood-Paley Identity.
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Lemma 3. Lemma 2.2 of [2] Suppose that g ∈ L1(T) and if g(0) =
󰁕
T gdm then

2

󰁝

D
|∇g(z)|2 log 1

|z|dA(z) =

󰁝

T
|g − g(0)|2dm =

󰁝

T
|g|2dm− |g(0)|2.

By some rearrangement, then follows the equivalent norm

Proposition 2. Suppose that f ∈ H2(D) then we have

󰀂f󰀂2H2(D) = |f(0)|2 + 2

󰁝

D
|g′(z)|2 log 1

|z|dA(z).

2.2. Carleson embedding theorem. And then we introduce the Carleson em-
bedding theorem on H2(D):
Theorem 2. Let µ a non-negative measure in D. Then the following are equivalent.

(i): The embedding operator J : L2(T) → L2(D, µ), with J(f)(z) = f(z), is
bounded.

(ii): C(µ)2 := supz∈D 󰀂J k̄z󰀂2L2(µ) = supz∈D 󰀂Pz󰀂L1(µ) < ∞, where k̄z(ζ) =

(1−|z|2)1/2
(1−ζz̄) , the reproducing kernel for the Hardy space H2(D).

(iii): Iµ = sup{ 1
rµ(D) ∩ Q(ζ, r) : r > 0, ζ ∈ T} < ∞, where Q(ζ, r) is a ball

measured with respect to the non-isotropic metric associated on D.
Moreover, the following inequalities hold

C(µ) ≤ 󰀂J 󰀂 ≤ 4C(µ)

and
32I(µ) ≤ C(µ)2 ≤ 32I(µ)

Since (i)⇔(iii) is [1]’s main content, we only show (ii)⇔(iii) here

Proof. Suppose (ii) is true first, then

C(µ)2 ≥
󰁝

D
Pz(ζ)dµ(ζ) =

󰁝

D

(1− |z|2)
|1− zζ̄|2

dµ(ζ).

For ξ ∈ T and r ∈ (0, 2), set z = (1− r
2 )ξ now consider the non-isotropic ball Q(ξ, r)

introduced by non-isotropic metric:

d(z, ζ) = |1− zζ̄|1/2.
Then z ∈ Q(ξ, r). For z, ζ ∈ Q(ξ, r), by triangle inequality we have

|1− zζ̄|1/2 ≤ |1− zξ̄|1/2 + |1− ζξ̄|1/2

Squaring the above inequality, get

|1− zζ̄| ≤ 2(|1− zξ̄|+ |1− ζξ̄|) ≤ 4r

With this estimate, we have

C(µ)2 ≥
󰁝

D

(1− |z|2)
|1− zζ̄|2

dµ(ζ)

≥
󰁝

D∩Q(ξ,r)

(1− |z|2)
|1− zζ̄|2

dµ(ζ)

≥ 16−1r−2(1− |z|)
󰁝

D∩Q(ξ,r)

dµ(ζ)

= 16−1r−2(1− |z|)µ(D ∩Q(ξ, r))
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Taking the supremum of r over (0, 2) in the last inequality above and get

32−1I(µ) ≤ C(µ)2

Now suppose that (iii) is true, since the situation farer away from T is often
more clear. We will separate the question into two cases: |z| ≤ 3

4 and |z| > 3
4 (We

note that we choose 3
4 here is propose to get the estimate 32−1I(µ) ≥ C(µ)2, one

can also choose other positive numbers less than 1).
(1).|z| ≤ 3

4
Recall following inequality holding for the Poisson kernel

Pz(ζ) =
(1− |z|2)
|1− zζ̄|2

≤ 1− |z|2
(1− |z|)2 =

(1 + |z|)2
(1− |z|2) ≤ 4

(1− |z|2)

Then since |z| ≤ 3
4

󰁝

D
Pz(w)dµ(w) ≤ 26

7
µ(D)

=
26

7
2µ(D ∩Q(ξ, 2))

≤ 20I(µ)

(2).|z| > 3
4

Define the normalized z′ = z
|z| and

Qk := D ∩Q(z′, 2k+1(1− |z|2)) ∀k ∈ N

Then for w ∈ Qk+1 ⊂ Qk we have

|1− wz̄′| ≥ 2k+1(1− |z|2).

By triangle inequality we have

|1− wz̄′|1/2 ≤ |1− wz̄|1/2 + |1− zz̄′|1/2

= |1− wz̄|1/2 + (1− |z|)1/2

≤ |1− wz̄|1/2 + (1− |z|2)1/2

Squaring the last inequality, get

|1− wz̄′| ≤ 2(|1− wz̄|+ (1− |z|2))

which implies

|1− xz̄| ≥ 2−1|1− wz̄′|− (1− |z|2)
≥ 2k(1− |z|2)− (1− |z|2)
≥ 2k−1(1− |z|2)
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When w ∈ Qk+1 \Qk, we have
󰁝

D
Pz(w) =

󰁝

Q1

Pz(w)dµ(w) +

∞󰁛

k=1

󰁝

Qk+1\Qk

Pz(w)dµ(w)

≤
󰁝

Q1

4

(1− |z|2)dµ(w) +
∞󰁛

k=1

󰁝

Qk+1\Qk

(1− |z|2)
4k−1(1− |z|2)2 dµ(w)

≤ 4
µ(Q1)

(1− |z|2) +
∞󰁛

k=1

1

4k−1

µ(Qk+1)

(1− |z|2)

≤ 16I(µ) + 8I(µ)

∞󰁛

k=1

2−k ≤ 32I(µ)

□

2.3. Uchiyama’s Lemma. First we introduce a lemma which is related with em-
bedding theorem on H2(D).

Lemma 4 (Uchiyama’s Lemma). Let ϕ be a non-negative, bounded, subharmonic
function. Then for any f ∈ H2(D)

󰁝

D
∆̃ϕ(z)|f(z)|2dµ(z) ≤ 󰀂ϕ󰀂∞󰀂f󰀂22

where dµ = 2
π log 1

|z|dA(z), and ∆̃ = 1
4∆ = ∂∂̄

Proof. Since ϕ is homogeneous, we can assume without loss of generality that
󰀂ϕ󰀂∞ = 1, i.e. at the both side of equation, ∆̃ϕ and 󰀂ϕ󰀂∞ have the same constant
coefficients. By directly computation we have,

∆̃(eϕ(z)|f(z)|2) = eϕ∆̃ϕ|f |2 + eϕ|∂ϕf + ∂f |2 ≥ ∆̃ϕ|f |2

integrate above inequation over D then use Green’s formula,
󰁝

D
∆̃ϕ|f(z)|2dµ(z) ≤

󰁝

D
∆̃(eϕ|f |2)dµ(z)

=

󰁝

T
eϕ(ζ)|f(ζ)|2dm(ζ)− eϕ(0)|f(0)|2

≤ e

󰁝

T
|f(ζ)|2dm(ζ) = e󰀂f󰀂2H2

□

We note that if change ϕ to a constant function, it is easy to see that above
lemma can imply the embedding L2

µ(D) → H2(D)
󰁝

D
|f(z)|2dµ(z) ≤ C

󰁝

T
|f(ζ)|2dm(ζ)

3. Carleson measures in bi-disc D2

3.1. Decompositions. When researching Carleson measures, an often-used tech-
nique is to decompose the region where the Carleson measures on. There are many
ways to decompose the region, e.g. Carleson tents, Carleson boxes, Carleson rect-
angles and so on. In practice, we can choose a most convinent decomposition to
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solve our problems. To decompose we usually need a lattice to satisfy a covering
lemma like what follows.

Lemma 5 (Theorem 2.23 in [11]). There exists a positive N such that for any
0 < r ≤ 1 we can find a sequence {ak} in D with the following properties.

(1): D = ∪k∆(ak, r);
(2): The set ∆(ak, r/4) are mutually disjoint;
(3): Each point z ∈ D belongs to at most N of the sets ∆(ak, 2r).

Which is a decomposition of D, to decompose other regions is similar to this.
Now we introduce the Carleson tent. There are different ways to construct a

Carleson tent. Let Q ⊂ Rn be a cube and let

T (Q) = {(x, y) : x ∈ Q, 0 ≤ y ≤ ℓ(Q)}

With this decomposition, we can give a definition of Carleson measure.

Definition 3. A measure µ is a Carleson measure if for all cubes Q ⊂ Rn, there
is a constant C such that

(1) µ(T (Q)) ≤ C|Q|

And we also have another way by which we can define a Carleson measure. For
simplicity, we consider case n = 1.

Definition 4. Let Ω ⊂ R be an arbitrary open set. Then a measure is Carleson if
for all open sets Ω there is a C such that

(2) µ(T (Ω)) ≤ C|Ω|.

And then we show that in fact those two definitions are same.

Lemma 6. (1) and(2) are equivalent.

Proof. It is clear that if (2) holds then so does (1).
Suppose that (1) holds. Since Ω is a open set in R, by some decompositions like

Lemma 5 there exists disjoint open intervals {Ik} such that Ω = ∪Ik, then

µ(T (Ω)) ≤ µ(T (∪Ik))
≤

󰁛

k

µ(T (Ik))

≤ C
󰁛

k

|Ik| = C|Ω|

which implies (4), as desired. □

Also, a similar argument applies when Ω ⊂ Rn like [5].
Now we have two possible way to study Carleson measures in one-parameter.

We can either form a tent over arbitrary open sets like (4), or we can form the tent
over cubes like (3). This suggests that we also have two different ways to construct
Carleson tents in the multi-parameter setting.

For simplicity, we consider the case when Ω ⊂ Rn is open. One possible candidate
is

(3) µ(T (R)) ≤ C|R| for ∀R = I × J



8 ZHAN ZHANG

Here the tent over the rectangle R is given by T (R) = T (I) × T (J). Another
possible candidate is

(4) µ(T (Ω)) ≤ C|Ω| for ∀Ω ⊂ R2

Then we consider whether these two definitions are equivalent. Again, it is
immediate that (4) implies (3). But it is not clear that whether (3) could imply
(4). In fact, Carleson gives a counter example about (3), which means (3) is a
weaker condition.

Theorem 3 (Carleson,[8]). There exists a measure µ such that

µ(T (R)) ≤ C|R| for ∀R = I × J.

but 󰁝

D2

|u(z, w)|pdµ(z, w) ≤ C(p)

󰁝

T2

|f(t, s)|pdtds for ∀f ∈ Lp(T2)

3.2. An example on bidisc D2. In this section, for simplicity, we focus on the
case of the bidisc D2.

First, recall that for an open subset Ω ⊂ T2, we form the tent over Ω to be the
union of the products of the rectangles R = I × J with I, J ⊂ T and I on the
boundary of the first disc, J on the boundary of another, and R ⊂ Ω.

S(Ω) =
󰁞

R⊂Ω

S(I)× S(J).

where S(I) is the one-parameter tent over the interval I which we defined in last
subsection.

Now we introduce a example of multi-parameter Carleson measure on bi-disc D2.

Theorem 4 (Chang[10], Fefferman[6]). Let f ∈ L∞(T2), and let v(z, w) denote the
multiple Poisson extension of f to the bidisc D2. Then for every open set Ω ⊂ T2

we have 󰁝 󰁝

S(Ω)

|∇z∇wv(z, w)|2 log
1

|z| log
1

|w|dA(z)dA(w) ≲ |Ω|

There are two different way to prove this theorem given separately by Chang[10]
and Fefferman[6]. Lecture[4] introduced the approach by Fefferman, which mainly

reformed ∆1∆2(ϕ(u)ψ(v)) =
󰁓4

k,j−0 ϕ
(k)ψ(j)Ikj(u, v) (where Ikj is an expression

involving derivatives of the functions u and v) and consider the situations of Ikjs
separately.

Since Fefferman’s method has been introduced vividly in [4], we will not mention
it much here. For completeness, in this essay, we will introduce another approach
by Chang[10]. Briefly speaking, he used a specialized decomposition with many
useful properties to finish the proof. The original theorem of Chang is in the form
like:

Theorem 5. For a function f ∈ L∞(T), the measure

dµf (z1, z2) = |∇u(z1, z2)|2 log
1

|z1|
log

1

|z2|
dz1dz2dz̄1dz̄2

is a Carleson measure on the bi-disc, where u is the bi-harmonic extension of f ,
and

|∇u(z1, z2)|2 =

󰀣󰀏󰀏󰀏󰀏
∂2u

∂z1∂z2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z1∂z̄2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z̄1∂z2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z̄1∂z̄2

󰀏󰀏󰀏󰀏
2
󰀤
(z1, z2).
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And here is some notations. Let R+
z = {z = x+ iy|y > 0} denote the upper half

plane. For each z = x+iy ∈ R+
z , let Iz denote the interval {s||s−x| < y} on the real

line R. For each connected open set U ⊂ R2 = R×R, define S(U) the region {z|Uz ⊂
U}. Given a function f ∈ L1(R2), let u(x1+ iy1, x2+ iy2) = (Py2 ∗ (Py1 ∗f))(x1, x2)
denote itsnbi-harmonic extension to R+

2 ×R+
2 , where Py(x) =

1
π

y
x2+y2 is the Poisson

kernel. Then we can reform Theorem 5 to

Theorem 6. For a function f ∈ L∞(R2) ∩ L1(R2), the measure

dµf (z1, z2) = |∇u(z1, z2)|2y1y2dx1dy1dx2dy2

satisfies

(5)

󰁝 󰁝

S(U)

dµf (z1, z2) ≤ C|U | for all open connected sets U in R2.

where C is a constant only depending on the bound of f .

Then we construct a decomposition on R2. Fix a connected open set U ⊂ R2,
let intervals I and J denote separately the projections of U to its first and second
coordinate. Fix a point x1 ∈ I, 0 ≤ y1 ≤ d(x1, I

c), (where Ic is the complement
of I and d denotes the Euclidean distance). When y1 > 0, let {Jx1,y1,ℓ}ℓ denote
the collection of maximal disjoint intervals such that {x1}× Jx1,0,ℓ ⊂ U . For each
x1, y2, ℓ, let Cx1,y1,ℓ be the centre of Jx1,y1,ℓ and define

Tx1,y1(t) =
󰁛

ℓ

|Jx1,y1,ℓ|2
(Cx1,y1,ℓ − t)2 + |Jx1,y1,ℓ|2

for t ∈ R

For each α > 0, let

Ex1,y1,α = {t ∈ R|Tx1,y1(t) > α}.
Then with the following lemma we can estimate Ex1,y1,α

Lemma 7 (Lemma 1 of [10]). |Ex1,y1,α| ≤ (C/α1/2)
󰁓

ℓ |Jx1,y1,ℓ| where C is a
universal constant.

And other useful properties of Ex1,y1,α

Lemma 8 (Lemma 2 of [10]).

(a): If α > β, then Ex1,y1,α ⊂ Ex1,y1,β.

(b): If α < 1/2, then Ex1,y1,α ⊃
󰁖

ℓ J̃x1,y1,ℓ, where J̃ means the interval with
the same centre as J but twice its length.

(c): Fix x1 ∈ I, 0 < α < 1/2, let

Fx1,α =
󰁞

0≤y1≤d(x1,Ic)

Ex1,y1,α;

Fx1,α \
󰁞

ℓ

J̃x1,0,ℓ ⊂ Ex1,0,α/8.

(d): For each 0 < α < 1/2, let Uα =
󰁖

x1∈I({x1} × Fx1,α). For each t ∈󰁖
x1∈I Fx1,α, let It,α denote the collection of maximal intervals such that

It,α × {t} ⊂ Uα and Ix1
t,α is the interval in It,α which contains x1, then

t ∈ Ex1,y1,α ⇒ y1 ≤ d(x1, (I
x1

t,α/8)
c).

(e): |Uα| ≤ (2 + (C/α1/2))|U | for each 0 < α < 1/2.
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then with these we can begin to prove (5). Assume f is real-valued. Then
consider

|∇u(z1, z2)|2 =

󰀣󰀏󰀏󰀏󰀏
∂2u

∂z1∂z2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z1∂z̄2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z̄1∂z2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂z̄1∂z̄2

󰀏󰀏󰀏󰀏
2
󰀤
(z1, z2).

take z = x+ iy, we get

|∇u(x1+iy1, x2+iy2)|2 =

󰀣󰀏󰀏󰀏󰀏
∂2u

∂x1∂x2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂x1∂y2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂y1∂x2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏
∂2u

∂y1∂y2

󰀏󰀏󰀏󰀏
2
󰀤
(z1, z2).

Then we only need to consider the term
󰀏󰀏󰀏 ∂2u
∂x1∂x2

󰀏󰀏󰀏
2

. Proof on other three terms
are same.

For the fixed open, connected set U , let Jx2

x1,y1,ℓ
denote the interval Jx1,y1,ℓ which

contains x2. Then integrate by parts we get

󰁝 󰁝

S(U)

󰀏󰀏󰀏󰀏
∂2u

∂x1∂x2
(xi + iy1, x2 + iy2)

󰀏󰀏󰀏󰀏
2

y1y2dx1dy1dx2dy2

≤
󰁝

I

󰁝 d(x1,I
c)

0

󰀳

󰁃
󰁝

󰁖
Jx1,y1,ℓ

󰀳

󰁃
󰁝 d(x2,

󰀓
Jx2

x1,y1,ℓ)
c
󰀔

0

󰀏󰀏󰀏󰀏
∂2u

∂x1∂x2
(xi + iy1, x2 + iy2)

󰀏󰀏󰀏󰀏
2

y2dy2

󰀴

󰁄 dx2

󰀴

󰁄 y1dy1dx1

Fix x1, y1, consider the middle term

Ax1,y1 :=

󰁝

󰁖
Jx1,y1,ℓ

󰁝 d(x2,J
x2

x1,y1,ℓ)
c

0

󰀏󰀏󰀏󰀏
∂2u

∂x1∂x2

󰀏󰀏󰀏󰀏
2

y2dy2dx2

Choose some 0 < α0 < 1/2 and write f = f
(1)
x1,y1 + f

(2)
x1,y1 , where

f (1)
x1,y1

= fχR×Ex1,y1,α0
, f (2)

x1,y1
= f − f (1)

x1,y1
.

Then we consider f
(1)
x1,y1 , let A

(1)
x1,y1 , A

(2)
x1,y1 be the same form as Ax1,y1 with respect

to the bi-harmonic extensions u
(1)
x1,y1 , u

(2)
x1,y1 of f

(1)
x1,y1 and f

(2)
x1,y1 separately. Then

A(1)
x1,y1

≤
󰁝

R

󰁝 ∞

0

|∂
2u

(1)
x1,y1

∂x1∂x2
(xi + iy1, x2 + iy2)|2y2dy2dx2

≲
󰁝

R

󰀏󰀏󰀏󰀏󰀏
∂2u

(1)
x1,y1

∂x1
(xi + iy1, t)

󰀏󰀏󰀏󰀏󰀏

2

dt

≲
󰁝

Ex1,y1,α0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

dt.

Here u
(1)
x1,y1 , u respectively denotes the harmonic extension in t to R2

+ of the func-

tions f
(1)
x1,y1(x1 + iy1, t) and f(x1 + iy1, t). Thus by inequality above, change the
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order of integrate, Lemma 8 (d) we have

󰁝

I

󰁝 d(x1,I
c)

0

A(1)
x1,y1

y1dy1dx1

≲
󰁝

I

󰁝 d(x1,I
c)

0

󰁝

Ex1,y1,α0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

dty1dy1dx1

≲
󰁝

I

󰁝

∪0≤y≤d(x1,Ic)Ex1,y1,α0

󰀣󰁝

{y1|t∈Ex1,y1,α0
}

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

y1dy1

󰀤
dtdx1

≲
󰁝 󰁝

Uα0

󰀣󰁝 d(x1,(I
x1
t,α0/8

)c)

0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

y1dy1

󰀤
dtdx1

≤
󰁝 󰁝

Uα0/8

󰀣󰁝 d(x1,(I
x1
t,α0/8

)c)

0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

y1dy1

󰀤
dtdx1

=

󰁝

Jα0/8

󰁝

It,α0/8

󰀣󰁝 d(x1,(I
x1
t,α0/8

)c)

0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

y1dy1

󰀤
dtdx1

≲ 󰀂f󰀂2∞
󰁝

Jα0/8

|It,α0/8|dx = |Uα0/8|󰀂f󰀂2∞

where Jα0/8 is the set which is the projection of Jα0/8 mapping on t(the second
coordinate).

And then we estimate the second term A
(2)
x1,y1 . Again, let u

(2)
x1,y1 , u denote the

harmonic extension in the t variable of f
(2)
x1,y1(x1+ iy1, t), f(x1+ iy1, t) respectively.

Then by directly gradient calculate we get

󰀏󰀏󰀏󰀏󰀏
∂2u

(2)
x1,y1

∂x1∂x2
(x1 + iy1, x2 + iy2)

󰀏󰀏󰀏󰀏󰀏 ≤
󰁝

R

|(∂u(2)
x1,y1/∂x1)(x1 + iy1, t)|
(x2 − t)2 + y22

dt

≤
󰁝

(Ex1,y1,α0 )
c

|(∂u/∂x1)(x1 + iy1, t)|
(x2 − t)2 + y22

dt.

By Lemma 8 (b), t ∈ (Ex1,y1,α0)
c implies t ∈

󰀓󰁖
ℓ
󰁨Jx1,y1,α

󰀔c

. Which implies that

for x2 ∈ Jx1,y1,ℓ and y2 ≤ d(x2, (J
x2

x1,y1,ℓ
)c), one has (x2 − t)2 + y22 ≳ (Cx2

x1,y1,ℓ
−

t)2 + |Jx2

x1,y1,ℓ
|2.(recall that Cx1,y1,ℓ is the centre of Jx1,y1,ℓ). By this inequality and

directly estimate we get

󰁝 d(x2,(J
x2
x1,y1,ℓ)

c)

0

󰀏󰀏󰀏󰀏
∂2u

∂x1∂x2
(x1 + iy1, x2 + iy2)

󰀏󰀏󰀏󰀏
2

y2dy2

≲

󰀳

󰁃
󰁝

Ec
x1,y1,α0

󰀏󰀏󰀏∂u/∂x1(x1 + iy1, t)|Jx2

x1,y1,ℓ
|
󰀏󰀏󰀏

(Cx2

x1,y1,ℓ
− t)2 + |Jx2

x1,y1,ℓ
|2 dt

󰀴

󰁄

2

≲
󰁝

Ec
x1,y1,α0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2 |Jx2

x1,y1,ℓ
|

(Cx2

x1,y1,ℓ
− t)2 + |Jx2

x1,y1,ℓ
|2 dt
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Recalling that Tx1,y1(t) =
󰁓

ℓ
|Jx1,y1,ℓ|2

(Cx1,y1,ℓ−t)2+|Jx1,y1,ℓ|2 for t ∈ R, thus

A(2)
x1,y1

≲
󰁝

Ec
x1,y1,α0

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

Tx1,y1(t)dt

By 8 (a), choose a decreasing sequence αn which tends to zero, by the definition
of Ex1,y1,αns one has

A(2)
x1,y1

≲
∞󰁛

n=1

󰁝

Ec
x1,y1,αn\x1,y1,αn−1

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

Tx1,y1
(t)dt

≤
∞󰁛

n=1

αn−1

󰁝

Ex1,y1,αn

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

dt

Hence 󰁝

I

󰁝 d(x1,I
c)

0

A(2)
x1,y1

y1dy1dx1 ≤
∞󰁛

n=1

Bn

where

Bn = αn−1

󰁝

I

󰁝 d(x1,I
c)

0

󰁝

Ex1,y1,αn

󰀏󰀏󰀏󰀏
∂u

∂x1
(x1 + iy1, t)

󰀏󰀏󰀏󰀏
2

dty1dy1dx1

And one can estimate Bn by the same way used to estimate A
(1)
x1,y1 . Then get

Bn ≤ αn−1|Uαn/8|󰀂f󰀂2∞.

With these estimates above and 8 (e), get

󰁝 󰁝

S(U)

| ∂2u

∂x1∂x2
|2y1y2dy1dy2dx1dx2 ≲

󰀣
|Uα0/8|+

∞󰁛

n=1

αn−1|Uαn/8|
󰀤
󰀂f󰀂2∞

≲ C|U |
And sodo this to other three terms, which implies what we desired.

4. Conclusion

In this essay, we introduced Carleson measures on H2(D) and Carleson measures
on bi-disc D2 respectively as an example of single-parameter Carleson measures and
multi-parameter Carleson measures. By this examples we find that when in the case
of multi-parameters, many properties and techniques is still valid or has a multi-
parameter edition. But even in the space simple as D2, calculate is much more
complicated than one-parameter cases. Also, choose a proper decomposition will
make the proof easier.
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