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1700's, Euler & Bernoulli: Bending of
beams, buckling formula, differential
equations.
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Late 1700's, Lagrange: Provided
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1800's, Cauchy & Green: Stress tensor,
motion/equilibrium equations. Potential
theory, boundary value problems.
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The modern framework of Nonlinear Elasticity (calc. var. &
nonlinear PDE’s) was built in the late 1900's, particularly by
Antman
» Nonlinear theory of strings, rods, shells, and 3D bodies.
» Geometric and mechanical realism.
Ball

» Introduced polyconvexity to guarantee existence of
minimizers.

» Analysis of singularities, cavities, and microstructure.
Ciarlet
» Dimension reduction, [-convergence.

» Foundational work in finite element methods.



Nonlinear Elasticity

Given a reference body X C R”, the elastic/strain energy of a
deformation h: X — R” is defined as

E[h] = /X W/(Dh(x)) dx,

where W(-) is the stored energy function, expressing the
properties of the material being deformed.



Nonlinear Elasticity

Given a reference body X C R”, the elastic/strain energy of a
deformation h: X — R” is defined as

E[h] = /X W/(Dh(x)) dx,

where W(-) is the stored energy function, expressing the
properties of the material being deformed.

Variational formulation: Given an appropriate set of elastic
deformations h, find a minimizer for the energy E[h].
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Elastic deformations

Q: What natural constraints should be placed on deformations?
Non-interpenetration of matter: Conditions to ensure that
deformations are physically meaningful, e.g.

» Deformations are injective.

» Deformations satisfy det Dh > 0 or > 0.

» Deformations are monotone maps.

Analytical requirements: Deformations must have finite energy,
E[h] < oo, requiring e.g.

» Deformations must lie in a Sobolev space W1P(X).
Along with boundary constraints (such as fixed boundary values

hlax = ), these give rise to various meaningful classes of elastic
deformations to study.
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Solution: Minimizer is the conformal map g : D — Y given by the
Riemann Mapping Theorem.
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In general, it can be a rather deep question whether admissible
deformations even exist.

Question: Let 1 < p < co. Given a Jordan domain Y C R2, does
there exist a W1P-homeomorphism h: D — Y?

h

—

Answer:
» Riemann Mapping Theorem: Guarantees existence for p < 2.

» Characterizing existence for p > 2 is an open problem.
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For fixed boundary values, this problem ties in to Sobolev trace
theory. Let Y again be a planar Jordan domain, and consider:
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boundary homeomorphism. Suppose that ¢ is the trace of some
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Does ¢ admit a homeomorphic W1P-extension?



Elastic deformations

For fixed boundary values, this problem ties in to Sobolev trace
theory. Let Y again be a planar Jordan domain, and consider:

Question: Let 1 < p < o0, and let ¢ : D — OY be a given
boundary homeomorphism. Suppose that ¢ is the trace of some
WLP-map.

Does ¢ admit a homeomorphic W1P-extension?

The answer depends intricately on the geometry of the target
domain Y.

The general answer remains no (Zhang 2019, K-Onninen 2023),
but conditions under which the answer is positive has been an
active topic of research.
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Trace theorem for Sobolev homeomorphisms

Let 1 < p < oo. Gagliardo’s trace theorem says that a map ¢
defined on OD is in the trace space of W1P(D) if

_ p
// [p(x) — o(y)] dxdy < oo
apJop X —ylP

Surprisingly, there is a direct analogue for W1-P-homeomorphisms.

Theorem (K-Onninen-Xu 2025)

Let 1 < p < oo and ¢ : 9D — JY be a boundary homeomorphism. Then
¢ admits a homeomorphic W'P-extension to D if and only if

/m /BD dy(tf)EX)w(y))” dxdy < oo

_y|P

Here dy denotes the internal distance in the domain Y, i.e. length
of the shortest connecting curve between two points.
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Approximation by diffeomorphisms

Ball-Evans: Is it possible to approximate W1P-homeomorphisms
via diffeomorphisms? Main open case: 3D.

2D proofs (Iwaniec-Kovalev-Onninen 2011, Hencl-Pratelli 2015)
are based on extension methods for Sobolev homeomorphisms.

Even the simplest 3D problem of characterizing when a
homeomorphism ¢ : S> — S? can be extended as a
W1P-homeomorphism to B3 remains open.

(Sufficient conditions, Hencl-K-Onninen 2024)
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Well-posedness of the minimization problem

The standard scheme to ensure the existence of a minimizing
deformation requires the weak lower semicontinuity of the elastic
energy E[h].

The essential convexity condition to ensure this is Morrey's
quasiconvexity:

1
W(A) < |X|/ W(A + Dg) dx, where g € (5°(X).
X

Quasiconvexity sits neatly between rank-one convexity (too
weak) and polyconvexity (often too strong).

Morrey’s conjecture: Does rank-one convexity imply
quasiconvexity (in 2D)?
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The most important rank-one convex functional in 2D is the
Burkholder functional

B,(A) = [(g - 1) A2 - gdet A] AP72, AcR?*2
Proving the quasiconvexity of B, would, for example, solve the
long-standing open problem of determining the LP-norms of the
Beurling-Ahlfors transform.



The Burkholder functional

The most important rank-one convex functional in 2D is the
Burkholder functional

B,(A) = [(g . 1) A2 - gdet A] APP~2, A€ R2*2

Proving the quasiconvexity of B, would, for example, solve the
long-standing open problem of determining the LP-norms of the
Beurling-Ahlfors transform.

Note that Bo(A) = —det A.
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The Burkholder functional

Generalizing the work of Astala-lwaniec-Saksman-Prause:

Theorem (Astala-Faraco-Guerra-K-Kristensen 2024)

Let p>2, Ac R%*?, and f € A+ W;*(X) be such that B,(Df) < 0
a.e. in X. Then

1
Bo(A) < 5 /X B, (Df(z)) dz.

Note that B,(A) < 0 iff A is £5-quasiconformal.

Furthermore, the problem
inf{/ B,(Df(z)) dz:feg+ WolvP(X) is K-quasiregular}
X

admits a minimizer when 2 < p < % and g is K-quasiregular.



[1l: What does the minimizer look
like?
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Basic questions to understand about minimizers
Regularity:
» How smooth are minimizers?

» Can there be loss of continuity (when p < 2)?

Topology (loss of injectivity):

> 2D, p > 2: Monotone Sobolev maps provide the
weak /strong closure of W1P-homeomorphisms
(lwaniec-Onninen 2012).

» 2D, p < 2: Equality of weak/strong closure, topological
characterization of limits (Philippis-Pratelli 2017).
Symmetry:

» Non-radial minimizers for the p-harmonic energy exist for
planar annuli (K-Onninen 2018).

» Sufficient conditions to guarantee a radial minimizer for the
bi-Sobolev energy [, |[Dh|P + [,. |Dh™|P (K-Jussinmaki).



Thank you!



