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The modern framework of Nonlinear Elasticity (calc. var. &
nonlinear PDE’s) was built in the late 1900’s, particularly by

Antman

▶ Nonlinear theory of strings, rods, shells, and 3D bodies.

▶ Geometric and mechanical realism.

Ball

▶ Introduced polyconvexity to guarantee existence of
minimizers.

▶ Analysis of singularities, cavities, and microstructure.

Ciarlet

▶ Dimension reduction, Γ-convergence.

▶ Foundational work in finite element methods.
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Nonlinear Elasticity

Given a reference body X ⊂ Rn, the elastic/strain energy of a
deformation h : X → Rn is defined as

E[h] =
∫
X
W (Dh(x)) dx ,

where W (·) is the stored energy function, expressing the
properties of the material being deformed.

Variational formulation: Given an appropriate set of elastic
deformations h, find a minimizer for the energy E[h].
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Elastic deformations

Q: What natural constraints should be placed on deformations?

Non-interpenetration of matter: Conditions to ensure that
deformations are physically meaningful, e.g.

▶ Deformations are injective.

▶ Deformations satisfy detDh > 0 or ≥ 0.

▶ Deformations are monotone maps.

Analytical requirements: Deformations must have finite energy,
E[h] < ∞, requiring e.g.

▶ Deformations must lie in a Sobolev space W 1,p(X).

Along with boundary constraints (such as fixed boundary values
h|∂X = φ), these give rise to various meaningful classes of elastic
deformations to study.
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Example model

Minimize

E2[h] =

∫
D
|Dh(z)|2 dz

among W 1,2-homeomorphisms h : D → Y, where D ⊂ R2 is the
unit disk and Y is a planar simply connected domain.

Solution: Minimizer is the conformal map g : D → Y given by the
Riemann Mapping Theorem.
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I: Do deformations exist?



Elastic deformations

In general, it can be a rather deep question whether admissible
deformations even exist.

Question: Let 1 ≤ p < ∞. Given a Jordan domain Y ⊂ R2, does
there exist a W 1,p-homeomorphism h : D → Y?

Answer:

▶ Riemann Mapping Theorem: Guarantees existence for p ≤ 2.

▶ Characterizing existence for p > 2 is an open problem.
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Elastic deformations

For fixed boundary values, this problem ties in to Sobolev trace
theory. Let Y again be a planar Jordan domain, and consider:

Question: Let 1 ≤ p ≤ ∞, and let φ : ∂D → ∂Y be a given
boundary homeomorphism. Suppose that φ is the trace of some
W 1,p-map.

Does φ admit a homeomorphic W 1,p-extension?

The answer depends intricately on the geometry of the target
domain Y.

The general answer remains no (Zhang 2019, K-Onninen 2023),
but conditions under which the answer is positive has been an
active topic of research.
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Trace theorem for Sobolev homeomorphisms

Let 1 < p < ∞. Gagliardo’s trace theorem says that a map φ
defined on ∂D is in the trace space of W 1,p(D) if∫

∂D

∫
∂D

|φ(x)− φ(y)|p

|x − y |p
dx dy < ∞.

Surprisingly, there is a direct analogue for W 1,p-homeomorphisms.

Theorem (K-Onninen-Xu 2025)

Let 1 < p < ∞ and φ : ∂D → ∂Y be a boundary homeomorphism. Then
φ admits a homeomorphic W 1,p-extension to D if and only if∫

∂D

∫
∂D

dY(φ(x), φ(y))
p

|x − y |p
dx dy < ∞.

Here dY denotes the internal distance in the domain Y, i.e. length
of the shortest connecting curve between two points.
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Approximation by diffeomorphisms

Ball-Evans: Is it possible to approximate W 1,p-homeomorphisms
via diffeomorphisms? Main open case: 3D.

2D proofs (Iwaniec-Kovalev-Onninen 2011, Hencl-Pratelli 2015)
are based on extension methods for Sobolev homeomorphisms.

Even the simplest 3D problem of characterizing when a
homeomorphism φ : S2 → S2 can be extended as a
W 1,p-homeomorphism to B3 remains open.

(Sufficient conditions, Hencl-K-Onninen 2024)
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II: Does a minimizer exist?



Well-posedness of the minimization problem

The standard scheme to ensure the existence of a minimizing
deformation requires the weak lower semicontinuity of the elastic
energy E[h].

The essential convexity condition to ensure this is Morrey’s
quasiconvexity:

W (A) ≤ 1

|X|

∫
X
W (A+ Dg) dx , where g ∈ C∞

0 (X).

Quasiconvexity sits neatly between rank-one convexity (too
weak) and polyconvexity (often too strong).

Morrey’s conjecture: Does rank-one convexity imply
quasiconvexity (in 2D)?
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The Burkholder functional

The most important rank-one convex functional in 2D is the
Burkholder functional

Bp(A) ≡
[(p

2
− 1

)
|A|2 − p

2
detA

]
|A|p−2, A ∈ R2×2.

Proving the quasiconvexity of Bp would, for example, solve the
long-standing open problem of determining the Lp-norms of the
Beurling-Ahlfors transform.

Note that B2(A) = − detA.
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The Burkholder functional

Generalizing the work of Astala-Iwaniec-Saksman-Prause:

Theorem (Astala-Faraco-Guerra-K-Kristensen 2024)

Let p ≥ 2, A ∈ R2×2, and f ∈ A+W 1,2
0 (X) be such that Bp(Df ) ≤ 0

a.e. in X. Then

Bp(A) ≤ 1

|X|

∫
X
Bp (Df (z)) dz .

Note that Bp(A) ≤ 0 iff A is p
p−2 -quasiconformal.

Furthermore, the problem

inf

{∫
X
Bp (Df (z)) dz : f ∈ g +W 1,p

0 (X) is K -quasiregular

}
admits a minimizer when 2 ≤ p < 2K

K−1 and g is K -quasiregular.
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III: What does the minimizer look
like?



Basic questions to understand about minimizers

Regularity:

▶ How smooth are minimizers?

▶ Can there be loss of continuity (when p < 2)?

Topology (loss of injectivity):

▶ 2D, p ≥ 2: Monotone Sobolev maps provide the
weak/strong closure of W 1,p-homeomorphisms
(Iwaniec-Onninen 2012).

▶ 2D, p < 2: Equality of weak/strong closure, topological
characterization of limits (Philippis-Pratelli 2017).

Symmetry:

▶ Non-radial minimizers for the p-harmonic energy exist for
planar annuli (K-Onninen 2018).

▶ Sufficient conditions to guarantee a radial minimizer for the
bi-Sobolev energy

∫
A |Dh|p +

∫
A∗ |Dh−1|p (K-Jussinmäki).
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Thank you!


