GENERAL TOPOLOGY EXERCISES FOR SESSION 5 (TUE 11.3)

- **Exercise 1.** Prove Theorem 2.10: If the topology on X is induced by a family of maps $f_i: X \to Y_i, i \in I$, then a sequence $(x_n) \subset X$ converges to a limit x if and only if $f_i(x_n) \to f_i(x)$ for all $i \in I$.
- **Exercise 2.** Show that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.
- **Exercise 3.** Use the previous exercise to directly prove a statement from the previous exercise set: If $f, g: X \to Y$ are continuous and Y is Hausdorff, then the set $\{x \in X: f(x) = g(x)\}$ is closed.
- **Exercise 4.** Let us induce a topology \mathcal{T} on \mathbb{R}^2 using the map $f: \mathbb{R}^2 \to \mathbb{R}$ given as $f(x,y) = \sin(x+y)$. Find the closure of $\{(0,0)\}$ under this topology (draw a picture).
- **Exercise 5.** Let X, Y be Hausdorff. Prove that $X \times Y$ is Hausdorff. Does the same proof work for arbitrary product spaces?
- **Exercise 6.** Show that for $A \subset X$ and $B \subset Y$ we have $\overline{A \times B} = \overline{A} \times \overline{B}$ in the product topology of $X \times Y$.
- **Exercise 7.** Prove that an injective map $f: X \to Y$ is an embedding if and only if f induces the topology on X.
- **Exercise 8.** Let $f: X \to Y$ be continuous. Show that the graph $G_f = \{(x, f(x)) : x \in X\} \subset X \times Y$ is homeomorphic with X.
- **Exercise 9.** Show that if $f: X \to Y$ and X has the topology induced by f, then for any $A \subset X$ we have $\bar{A} = f^{-1}(\overline{f(A)})$.
- **Exercise 10.** Show that the topology of pointwise convergence on $\mathcal{F}(X,Y)$ is just the topology induced by the collection of maps $\chi_x : \mathcal{F}(X,Y) \to Y$ defined by $\chi_x(f) = f(x)$.