GENERAL TOPOLOGY EXERCISES FOR SESSION 7 (TUE 18.3)

- **Exercise 1.** Prove that if $A \subset X$ is connected, then \bar{A} is connected.
- **Exercise 2.** Let A be connected. Is int(A) necessarily connected?
- **Exercise 3.** Prove the **Border Crossing Theorem**: Let $E \subset X$ be connected and $A \subset X$. Prove that if E intersects A and A^{c} , then it intersects ∂A .
- **Exercise 4.** Suppose that in the space X for every pair of points $x, y \in X$ there exists a connected set E(x, y) which contains both x and y. Prove that X is connected. Conclude that every path connected space is connected.
- **Exercise 5.** Prove that a space X is locally connected if and only if the components of every open subset $U \subset X$ are also open sets.
- **Exercise 6.** Prove that none of the sets [0,1], [0,1) and (0,1) are homeomorphic. (Hint: How can you use connectedness?)
- **Exercise 7.** Show that if a metric space X is connected and has more than one point, it is uncountable. (Hint: Find a surjection from X to an interval in \mathbb{R} .)
- **Exercise 8.** Let $A \subset X$ and suppose that both A and X are connected. Show that if U and V form a separation of $X \setminus A$, then both $A \cup U$ and $A \cup V$ are connected.
- **Exercise 9.** Let $A, B \subset X$ be open sets such that $A \cup B$ and $A \cap B$ are connected. Show that A and B are connected.
- **Exercise 10.** Show that if $A \subset \mathbb{R}^2$ is countable, then $\mathbb{R}^2 \setminus A$ is path connected.