GENERAL TOPOLOGY EXERCISES FOR SESSION 9 (TUE 25.3) - **Exercise 1.** Show that a subset $S \subset X$ is dense if and only if $\overline{S} = X$. - Exercise 2. Prove that a second-countable space is Lindelöf. **Exercise 3.** Let $f, g: X \to Y$ be continuous functions with Y being Hausdorff. Suppose that f(s) = g(s) for every point s in a dense set $S \subset X$. Show that f(x) = g(x) for all $x \in X$. The next few exercises concern the **lower limit topology** on \mathbb{R} . This topology \mathcal{T}_{ℓ} is generated by the basis of half-open intervals $[a,b) \subset \mathbb{R}$, a < b. The resulting topological space is denoted by \mathbb{R}_{ℓ} , and is also sometimes called the *Sorgenfrey line*. - **Exercise 4.** Find the connected components of \mathbb{R}_{ℓ} . - **Exercise 5.** Check what separation axioms \mathbb{R}_{ℓ} satisfies. - **Exercise 6.** Does the sequence $x_n = 1 \frac{1}{n}$ have a cluster point in \mathbb{R}_{ℓ} ? - Exercise 7. Is \mathbb{R}_{ℓ} locally compact? - **Exercise 8.** Prove that \mathbb{R}_{ℓ} is Lindelöf. (difficult) **Exercise 9.** Let $f_j: X \to Y_j$ be a countable collection of functions to spaces Y_j which are second-countable. Prove that the topology on X induced by the f_j 's is second-countable. **Exercise 10.** Let X be second-countable. Show that if $A \subset X$ is uncountable, then $acc(A) \cap A$ is uncountable.